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Modeling the Long-Term Health and Cost 
Impacts of Reducing Smoking Prevalence 
through Tobacco Taxation in Ukraine

Introduction

Smoking is a leading cause of preventable premature deaths. Smoking’s 
effects will continue to devastate lives in many countries, including Ukraine, if 
measures are not implemented to reduce its prevalence. Smoking is a major 
cause of many chronic diseases, such as cardiovascular disease, respiratory 
disease, and smoking-related cancers. 

Over recent years, successful tobacco control policies in Ukraine have resulted 
in one of the fastest declines in smoking prevalence in the world (1). This is 
largely due to multifaceted tobacco control legislation, adopted from 2005 
and subsequently upgraded. 

Ukraine ratified the WHO Framework Convention on Tobacco Control (FCTC) in 
2006. Currently, Ukrainian legislation basically corresponds to FCTC requirements. 
In 2005, Ukraine adopted a first tobacco-control law. Since then, several 
additional tobacco-control policies have been implemented in the country. 

Smoke-free policies supported by media campaigns have covered many 
workplaces and public places since the middle of 2006. Under these policies, 
at least 50 percent of the area of restaurants and bars had to be isolated from 
the smoking area, so that tobacco smoke did not penetrate into smoke-free 
areas. This measure was supported by an intensive media campaign and 
public movement in favor of smoke-free policies. Many restaurants went 
completely smoke-free both before and after implementing this measure. As 
of December 2012, restaurants, workplaces, and other public places became 
100 percent smoke-free. Designated smoking places, which figured in the 
legislation between 2006 and 2012, were abolished in the amended laws.
As of late 2006, cigarette packs carried textual warning labels covering 30 
percent of their surface, in place of a previous warning which covered 10 
percent of the front surface and stated: “Ministry of Health warns: Smoking 
is bad for your health.” Since October 4, 2012, large (50 percent of the pack 
surface area), graphic health-warning labels on tobacco packaging have  
been introduced.

A ban on outdoor tobacco advertising since January 2009 was followed by a 
more comprehensive tobacco advertising ban, which entered into force on 
September 16, 2012.
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In addition to the reduced tobacco affordability observed during the global 
economic recession, the average tax incidence was increased between August 
2008 and July 2010 from 0.5 UAH (Ukrainian hryvnia, the national currency 
of Ukraine) to 3 UAH per cigarette pack. Further changes in tobacco tax rates 
were less substantial and were above inflation only in some years. 
However, while the policies described were definitely beneficial, much 
progress remains to be made. As of late 2015, the prevalence of current 
smoking among men in Ukraine was 45 percent (2, 3), although prevalence is 
much lower in women, at 11 percent (2, 3). 

It is not a given that smoking trends will continue to decrease in Ukraine, 
unless effective tobacco control measures are sustained and strengthened. 
Especially when the economy grows, commodities/luxuries such as smoking 
will become more affordable. 

Tobacco industry tactics can also become an important factor in determining 
the level of cigarette consumption. One of the mechanisms of this influence 
derives from the industry’s right to determine the maximum retail price of 
cigarettes and thus to manipulate the net-of-tax portion of the price. In 2016, a 
new tax policy stipulated that the minimal specific tobacco tax increase by 40 
percent. Thus, the retail price was expected to increase and the consumption 
of cigarettes to decrease. However, the actual level of cigarette consumption 
increased. This happened because tobacco companies, aiming to keep their 
customers, initiated “price wars.” This example illustrates that more factors are 
at play than are usually taken into account in weighing policy choices. Price 
and tax factors are extremely important and need to be considered when 
forecasting trends.

The present report provides evidence from a modeling exercise undertaken 
to predict the health and related cost impacts that may stem from the 
implementation of a tobacco excise tax increase in Ukraine. Impacts are 
calculated relative to the status quo before the tax hike, and are modeled, 
beginning in 2017, for 2025 and 2035. 

A microsimulation model was employed to simulate the long-term impact 
of tobacco taxation on the future burden of a range of non-communicable 
diseases (NCDs). Specifically, the disease outcomes quantified were coronary 
heart disease (CHD), stroke, chronic obstructive pulmonary disease (COPD), 
and lung cancer. The microsimulation model has been deemed by the 
OECD the most relevant method for NCD modeling based on risk-factor data 
(4). This report complements modeling work done to estimate the fiscal-
revenue impact and expected reduction in consumption that might stem 
from proposed additional tobacco excise tax increases in Ukraine. That work 
was carried out by the World Bank, using the Tobacco Tax Simulation Model 
(TaXSiM) developed by the World Health Organization (WHO) (5, 6). 
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Summary of results

Table 1 presents a summary of total disease cases (epidemiological) and costs 
(economic) by parameter, year, and scenario as rates per Ukraine population.

The model estimated that by 2035 the specified tax increase would result 
in the avoidance of 126,730 new cases of smoking-related disease; 29,172 
premature deaths; and 267,098 potential years of life lost, relative to no 
change in tax. These reductions in disease and death will avoid 1.5 billion 
UAH in healthcare costs and 16.5 billion UAH in premature mortality costs, 
respectively. 

Epidemiological outputs Year Sc0 (Baseline) Sc1

Cumulative incident cases
2025 5480948[±4237] 5427558[±4237]

2035 11366868[±5753] 11255173[±5753]

Cumulative incident cases avoided
2025 NA 56224[±6341]

2035 NA 126730[±9123]

Incident cases per year
2025 589035[±1545] 582341[±1545]

2035 646600[±1545] 640799[±1727]

Attributable incident cases
2025 218221[±1121] 208475[±1121]

2035 222603[±1041] 211984[±1041]

Cumulative premature deaths avoided
2025 NA 6372

2035 NA 29172

Cumulative potential years of life lost relative  
to baseline

2025 NA 48923

2035 NA 267098

Economic outputs 

Direct costs avoided (millions UAH)
2025 NA 542.23

2035 NA 1545.81

Cumulative premature mortality costs avoided 
(millions UAH)

2025 NA 3568.4

2035 NA 16536.4

Table 1:  Summary Table of the Outputs as Rates per Ukraine Population, by Year



Summary of Methods

Methods
The model simulates a virtual population of 
Ukraine, based on known population statistics. 

Initial smoking prevalence by age and sex was 
extracted from the 2015 Annual Household 
Survey conducted by the National Statistics 
Service of Ukraine. 

Scenarios took account of price impacts on uptake 
of smoking and cessation.  

Individuals within the model have a specified 
smoking status and a probability of contracting, 
dying from, or surviving a disease. 

Future prevalence of smoking is calculated based 
on the numbers of smokers and non-smokers who 
are still alive in a particular year. 

Data for disease incidence and mortality were 
extracted from the Global Burden of Disease 
database.

Relative risks of contracting diseases in smokers 
compared to non-smokers were extracted from 
peer-reviewed literature.

A five-module microsimulation model was used to 
predict the future health and economic impacts of 
smoking prevalence by 2035. 

The model quantifies the future impact on health 
and related costs of different levels of tax increase 
relative to a “no change” scenario.

Assumptions
Smoking prevalence follows a static trend from 
2015 estimates. 

A specified percentage of smokers who are 
affected by the tax increase move to the “never-
smoker” category in 2017, in order to account for 
reductions in uptake due to price increases. 

If an individual’s smoking status is changed by the 
intervention, their smoking status will then remain 
fixed for the entire simulation. 

Time since cessation is included in the model to 
account for change in disease risk for an ex-smoker. 

Smokers react quickly to the tax: we modeled an 
immediate effect and then a linear trend, in line with 
TaXSiM. 

Limitations
No data on survival for the specified NCDs were 
available.

Data on the percentages of ex-smokers in Ukraine  
are limited.

The model does not take account of future changes 
in policy or technology.

No change in secondhand smoke exposure is 
modeled.

Baseline is static over time. 

The simulation only includes four smoking-related 
diseases, so results are likely underestimates of the 
true effects.

No data on non-healthcare costs, e.g. lost productivity 
due to disease, were available.

No data were available to explore differences by 
social groups.

For the scenarios, smokers were moved to never 
smokers in order to account for change in uptake.  
This will overestimate the impact of the tax increases.

No in-depth uncertainty analysis was conducted.
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Full methods

Data Collection

Smoking Prevalence Data
Baseline smoking prevalence data was extracted from the 2015 Annual 
Household Survey, conducted by the National Statistic Service in Ukraine (7). 
Additional data on percentages of occasional smokers and ex-smokers were 
extrapolated from the omnibus surveys conducted by Kiev International 
Institute of Sociology (2, 3). 

Data manipulation and assumptions

1. Daily versus current smokers: The Annual Household Survey provides 
prevalence data on daily smoking only, rather than current smoking. Current 
smoking data are preferable, since the WHO target is focused on a total 
reduction in smoking prevalence, rather than number of cigarettes smoked. 
Modeling proceeded with a focus on prevalence of current smoking. Pooled 
estimates from other smaller surveys with more detailed collection of smoking 
status data were collated and the 2015 Household survey adjusted to include 
estimated proportions of occasional smokers. 

2. Ex-smokers: No data by age and sex were available for percentages of 
ex-smokers within the Annual Household Survey. However, some data 
were available from the recent omnibus surveys (2013-2015). Therefore, in 
order to take account of ex-smokers (who have a greater disease risk than 
never smokers), the distributions of ex-smokers and never smokers from the 
omnibus surveys were used to proportion out the non-smoker data into ex-
smoker and never smoker from the Annual Household Survey. This enabled 
us to initialize the model in the start year with a more accurate estimation of 
ex-smokers than would be done using proxy ex-smoker data. 

3. Sample sizes: Often, sample sizes by age group were not presented, 
therefore the total sample size was proportioned across the five-year age 
groups and the variance increased based on data from the UN population 
prospects database (8). 

4. Age groups: Data for some years were in wide age groups of more than 
20 years (e.g., 30-59 years), therefore prevalence was assumed to be the same 
across these groups. Once raw/more detailed data/data by five-year age 
groups become available, then the data can be updated.
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Disease Data
For this study, the following smoking-related NCDs were modeled: Coronary 
heart disease (CHD), stroke, lung cancer, and chronic obstructive pulmonary 
disease (COPD). Incidence and mortality data by age and sex were extracted 
from the Global Burden of Disease study database (9). Lung cancer data were 
grouped with trachea and bronchus data in the database, which slightly 
overestimates cases relative to Globocan (10). No survival data were available 
for these diseases in Ukraine, therefore survival data were calculated using 
DISMOD equations from the World Health Organization (11). 

Relative risks (RR) for smokers compared to non-smokers were extracted from 
prospective cohort studies which observed the development of CHD (12-17), 
COPD (17-21), lung cancer (17, 21-23), and stroke (24-26). As various cohort 
studies usually observed participants of different age groups, their estimates 
were compared and combined to cover the modeled population: Thus, 
relative risks for various age groups may derive from different studies. However, 
if RRs for neighboring age groups from various studies differed much, some 
smoothing was undertaken. Appendix 3 describes the method of creating RRs 
in more detail. 

For ex-smokers, RRs were assumed to decrease over time since cessation. The 
ex-smoker RR was computed using a decay function method developed by 
Hoogenveen and colleagues (27). This function uses the current smoker RR 
for each disease as the starting point and then models the decline in relative 
risk of disease for an ex-smoker over time, as detailed in Appendix 1 of the 
supplementary appendix. 

Health-Economic Data
Data on direct health care costs by disease were extracted from the literature 
(28), but no data on indirect, non-healthcare costs by disease were available. 
Data on direct health care costs were included in the model and the direct 
healthcare cost impacts output from the model. 

It was possible to calculate premature mortality costs by including average 
annual income.1 This accumulates the lost earnings due to death before age 
65 to provide a different measure of lost productivity in terms of losses of 
GDP due to death. However, this does not take account of losses in 
productivity due to morbidity. We carried out a sensitivity analysis on the costs, 
running the model with a discount rate of 5 percent, as is used in Russia  
(http://www.ispor.org/peguidelines/countrydet.asp?c=18&t=4).  
No discount rate was available for Ukraine.

1 http://data.worldbank.org/
indicator/NY.GDP.PCAP.
CD?year_high_desc=true  - 
average of 5 years taken from 
the World Bank and OECD 
national accounts data: $3320 
per year 
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Incidence Mortality Survival Direct healthcare costs

CHD GBD 2016 (9) GBD 2016 (9)
Converted from incidence and 
mortality

I Denisova, P Kuznetsova 
2014 (28)

Stroke GBD 2016 (9) GBD 2016 (9)
Converted from incidence and 
mortality

I Denisova, P Kuznetsova 
2014 (28)

COPD GBD 2016 (9) GBD 2016 (9)
Converted from incidence and 
mortality

I Denisova, P Kuznetsova 
2014 (28)

Lung 
Cancer

GBD 2016 (9) GBD 2016 (9)
Converted from incidence and 
mortality

I Denisova, P Kuznetsova 
2014 (28)

Table 2:  References for Disease Data

Population Data
In order to simulate the population of Ukraine, the population by age and sex, 
births by mother’s age, and total fertility rate statistics were taken from the UN 
population prospects database (8). 

Total mortality rates were taken from the WHO global health estimates 
database (29). 

These parameters enable the model to simulate the Ukrainian population as 
close to reality as is possible. 

The Microsimulation Model 

The UK Health Forum (UKHF) microsimulation model was originally developed 
for the English government’s Foresight enquiry (30, 31) and has been further 
developed over the past decade to incorporate a number of additional 
interacting risk factors, including smoking. (Methods are described in greater 
detail in (32, 33) and in our supplementary appendix 1.) The model simulates a 
virtual population that reproduces the characteristics and behavior of a large 
sample of individuals (20-100 million). These characteristics (age, sex, smoking 
status) can evolve over the life course based on known population statistics 
and risk factor data. Individuals can be born and die in the model. 

Figure 1 illustrates the modular nature of the model. 

Module 1 uses cross-sectional data on the prevalence of the risk factor - 
cigarette smoking in this case. For the current study, 2015 smoking prevalence 
data for Ukraine was extrapolated forward to 2035. It was assumed that the 
proportions of the population within each smoking category as calculated in 
2015 remained constant until 2035. 
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Module 2 is a microsimulation model which uses the prevalence of the risk 
factor over time, along with the specified data on the risks of developing 
diseases, to make projections of future disease burden. 

The model produces a wide range of different outputs, including incidence, 
cumulative incidence, prevalence, premature mortality, direct healthcare costs 
avoided, and disability-adjusted life years. 

To our knowledge, no other studies have used a microsimulation model 
to quantify the future costs and health impacts of tobacco taxation policy 
scenarios in Ukraine. 

Risk data

Distribution
programme

RI
SK

Population
data

Disease
data

Health
economic

data

Intervention
scenarios

UKHF Microsimulation© Programme

Output
data

Input datasets

Software programmes

Output

Figure 1:  Illustration of the Microsimulation Model

Development of Scenarios

An initial modeling study was carried out using the World Health Organization 
(WHO) TaXSiM model.2  Within this model, a scenario that reflects tobacco 
excise tax changes in 2017 was simulated to calculate the revenue impact as a 
result of this tax increase (Table 3). 

TaXSiM also calculated the percentage reduction in total cigarette 
consumption (%) due to the suggested tax changes. These taxation changes 
result in non-smokers’ (predominantly young people) not initiating smoking; 
smokers’ quitting, and smokers’ reducing the number of cigarettes smoked. 
Details of the TaXSiM model scenarios can be found in Table 3. 

2 WHO tobacco tax simulation 
model (TaXSiM) http://who.int/
tobacco/economics/taxsim/en/
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Figure 1:  Illustration of the Microsimulation Model

Actual 
2015

Expected 
Contri-
bution 
to GDP

Baseline Situation (2016): Ad 
valorem (12%) minimum 
specific (8.515 UAH) and 

simple specific (6.365 UAH) 

Expected 
Contri-
bution 
to GDP

SCENARIO 1 (2017): Ad valorem tax 
is the same as in 2016 (12%), and 

40% increase in both the minimum  
specific excise (11.92 UAH), and 

simple specific (8.91 UAH)**

Expected 
Contri-
bution 
to GDP

Total cigarettes 
taxed (billion 
pieces)

74.0 77.0 70.1

Average cigarette 
price (UAH per 
pack)

15.3 20.8 25.7

Average cigarette 
price (US$ per 
pack).*

$0.63 $0.81 $0.92

Average excise 
tax (UAH per 1000 
pieces)

308.9 431.4 600.0

Total excise tax 
revenue (billion 
UAH)

22.9 1.0% 33.2 1.4% 41.8 1.6%

Total excise tax 
revenue (US$ 
billion).*

$0.94 $ 1.30 $1.50

Total government 
revenue (excise, 
VAT and levies, 
billion UAH)

34.9 1.6% 49.9 2.2% 60.1 2.3%

Total government 
revenue (excise, 
VAT and levies, 
US$ billion).*

$1.44 $ 1.95 $2.16

Total expenditure 
on cigarettes 
(billion UAH)

56.4 79.9 90.0

Percentage 
change in 
total cigarette 
consumption (%)

4.1 -9.0

Table 3:  TaXSiM Model Scenarios and Outputs

* World Bank Group actual (2015 -2016) and forecast (2017): Annual average exchange rate = 2016 (1US$/25.6 UAH); 2017 (1US$/27.80 UAH)  
** per pack of 20 cigarettes
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Scenario Assumptions
1. Several studies suggest that around 50 percent of the effect of price increases 
on overall cigarette consumption results from participation changes (34, 35). 
Therefore, 50 percent of the estimated reduction in cigarette consumption 
was used as an estimate of the reduction in the total prevalence of smoking. 
While taxation which results in increased real prices of tobacco might reduce 
the intensity of smoking, research suggests that people who cut down actually 
inhale more, as measured by serum cotinine levels (36). Further, the WHO target 
is focused on a total reduction in smoking prevalence. Therefore, modeling 
proceeded with a focus on current smoking prevalence, as opposed to the 
number of cigarettes smoked. 

2. Our analysis of the omnibus surveys 2013-2015 showed that, in males, 
55 percent of the change in smoking prevalence was due to a reduction in 
uptake. Specifically, the percentage of smokers decreased, the percentage of 
ex-smokers did not change, while the percentage of never smokers increased. 
Therefore, these changes were probably due to males’ “not starting smoking.” 
Among females, 100 percent of the change in consumption was due to “not 
starting smoking” (2). 

3. While these average changes were not the same for each group, and people 
usually initiate smoking while they are under 30 years old (2), the model did not 
take these age differences into account, and the relative decline in percentages 
of current smokers was applied to all age groups. 
Therefore, it was assumed that taxation would result in changes in uptake. 

4. A baseline “static” trend was included. This assumed that smoking prevalence 
remains constant at 2015 rates. The tax increase scenario was compared to 
this baseline. 

5. The tax increase scenario represents the tax change adopted in January 2017.

6. The change in smoking prevalence occurs in the second year of the 
simulation only (2017). This is in line with TaXSiM. As noted above, tobacco 
companies’ “price wars” were observed to cause an increase in cigarette 
consumption, rather than the decrease expected according to taxation policies. 
Taking this into account, it was assumed that, in 2016, there would be no 
change in smoking prevalence from the 2015 level (37). The baseline used in 
the model was 2015 smoking prevalence held constant.

7. The scenarios are based on Monte Carlo simulations (Individuals were 
sampled from the population and simulated through).

8. The specified percentage of smokers who are affected by the tax increase 
move to the never-smoker category in 2017. 
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9. If an individual’s smoking status is changed by the scenario, their smoking 
status will remain fixed for the entire simulation. 

10. We assumed an immediate reduction in smoking prevalence due to the 
tax increases in 2017. We learned via personal communication with Prof. Joy 
Townsend that there are different views on the temporal impact of a tax: 
Econometricians follow Becker’s model, assuming that, as tobacco is very 
addictive, the reaction to price increases is slow and greater in the long run. 
Becker, therefore, uses a lagged variable of y (t-1) (38). Townsend and Atkinson 
take the opposite view (39): That smokers tend to react quickly to a price 
change. We used a model similar to theirs, with an immediate effect and then 
a linear trend, and in line with the TaXSiM model outputs. 

There were two scenarios: 

1. A baseline ‘static’ trend. This assumed that smoking prevalence stays 
constant at 2015 rates. 

2. A tax increase scenario. An earlier iteration of TaXSiM calculated that 
an increase in Ad valorem tax of 15 percent, a 30 percent increase in the 
minimum specific excise, 11.08 UAH, and a simple specific of 8.28 UAH 
would result in a reduction of 10.2 percent in cigarettes smoked. Using the 
assumptions above, this translated into a reduction in uptake of 5.61 percent 
in males, and 10.2 percent in females. Therefore, in 2017, this specified 
percentage of smokers was moved to the never-smoker group in order to take 
account of uptake and maintain 100 percent of smokers in the model (the 
population cannot exceed 100 percent). This slightly underestimates the effect 
of the scenario, as described in the discussion. This change occurred in 2017 
only. Appendix 2 provides the full TaxSiM analysis from the earlier iteration.

Scenario 1 is summarized in Table 4: 

% reduction in cigarettes  
consumption as per Table 2

Estimated expected reduction  
in smoking (males)

Estimated expected reduction  
in smoking (females)

(%) Uptake (%)
Number of cigarettes 

smoked (%)
Uptake (%)

Number of cigarettes 
smoked (%)

10.2 5.61 4.59 10.2 0

Table 4:  Summary of Scenarios
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Results

A number of different outputs are produced from the model, and these are 
defined below:

Smoking Prevalence (%)

Table 5 shows smoking prevalence for males, females, and both males and 
females combined for the baseline and Scenario 1. 

Year Scenario 0 (baseline) Scenario 1

M F TOTAL M F TOTAL

2016 40.8 5.7 21.5 40.8 5.7 21.5

2020 40.3 5.4 21.1 38.2 4.9 19.8

2025 39.4 5.3 20.5 37.5 4.8 19.4

2030 38.9 5.1 20.1 37.2 4.8 19.2

2035 38.2 5.0 19.8 36.7 4.7 19.0

Table 5:  Smoking Prevalence by Year, Sex and Scenario (%)

Males

Baseline Scenario 1

Figure 2: Male Smoking Prevalence by Year for Each Scenario.
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Baseline Scenario 0
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Figure 2: Male Smoking Prevalence by Year for Each Scenario.

Females

Baseline Scenario 1

Figure 3: Female Smoking Prevalence by Year for Each Scenario.
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Epidemiological Indicators 

Results from the microsimulation are presented as rates per 100,000, then 
scaled to the Ukraine population for that year, as estimated by the UN 
population prospects (8).

1. Cumulative incidence rate per year per Ukraine population 
The total number of new cases of a disease divided by the total number of 
susceptible people in a given year and accumulated over a specified period 
of the simulation from the year 2016. Therefore, the cumulative number of 
incident cases represents a sum of all of the incident cases from the start of the 
simulation.

2. Cumulative incidence avoided per Ukraine population over the 
simulation period
The total number of incident cases of disease avoided or gained as compared 
to baseline (i.e., scenario 0). A positive value represents the number of cases 
avoided, whereas a negative value represents the number of cases gained. 

3. Incidence
The total number of new cases of a disease, divided by the total number of 
susceptible people in a given year presented as a rate per population. 

4. Attributable incidence rate per Ukraine population per year
The number of new cases of a disease attributable to being a smoker or ex-
smoker in the Ukraine population. 
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5. Premature mortality rates per Ukraine population
Premature mortality refers to the total number of deaths in a given year below 
the life expectancy of that individual in the Ukraine population. Results are 
presented per year in the total population and cumulative over a given period 
of the simulation. 

6. Potential years of life lost per Ukraine population
For each individual, the difference between the reference age (life expectancy 
at birth) and the age of death is calculated. The average annual PYLL was 
calculated each year in the microsimulation. This metric considers individuals 
who have died in a given year and is output as a rate per 100,000, which is 
then scaled to a rate per Ukraine population. 
Economic outputs 

7. Direct cost avoided 
These are cumulative direct costs across the period of the simulation. The 
result for 2020 represents the cumulative costs avoided for the period 2016 to 
2020. These costs are scaled to the total population of Ukraine. 

8. Premature mortality costs
This relates to lost earnings due to premature deaths. The premature mortality 
costs for each individual in the year of death are calculated by summing over 
the income costs from the age of death until the individual’s life expectancy 
(LE) at birth. 
 
Summary Table

Table 6 presents a summary table of total disease cases (epidemiological) 
and costs (economic) by parameter, year, and scenario as rates per Ukraine 
population.

Scenario 0 (Sc0) refers to the baseline scenario where smoking prevalence was 
assumed constant based on 2015 smoking prevalence. 

Scenario 1 (Sc1) refers to the one-off tax scenario as summarized in table 3.

Cumulative Incident Cases 

Table 7 presents the cumulative incident cases for each disease by year, and 
Table 8 presents the cumulative incident cases avoided. 
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Epidemiological outputs Year Sc0 (Baseline) Sc1

Cumulative incident cases
2025 5480948[±4237] 5427558[±4237]

2035 11366868[±5753] 11255173[±5753]

Cumulative incident cases avoided
2025 NA 56224[±6341]

2035 NA 126730[±9123]

Incident cases per year
2025 589035[±1545] 582341[±1545]

2035 646600[±1545] 640799[±1727]

Attributable incident cases
2025 218221[±1121] 208475[±1121]

2035 222603[±1041] 211984[±1041]

Cumulative premature deaths avoided
2025 NA 6372

2035 NA 29172

Cumulative potential years of life lost relative  
to baseline

2025 NA 48923

2035 NA 267098

Economic outputs 

Direct costs avoided (millions UAH)
2025 NA 542.23

2035 NA 1545.81

Cumulative premature mortality costs avoided 
(millions UAH)

2025 NA 3568.4

2035 NA 16536.4

Table 6:  Summary Table of the Outputs as Rates per Ukraine Population, by Year

CHD COPD Lung Cancer Stroke Total

Year 
2025

Sc 0 3712722[+-3390] 665256[+-1695] 194068[+-847] 908901[+-1695] 5480948[±4237]

Sc 1 3679248[±3390] 655510[±1695] 188136[±847] 904664[±1695] 5427558[±4237]

Year 
2035

Sc 0 7707697[+-4719] 1346232[+-1966] 392110[+-1180] 1920828[+-2360] 11366868[±5753]

Sc 1 7638872[±4719] 1323421[±1966] 379132[±1180] 1913749[±2360] 11255173[±5753]

Table 7:  Cumulative Incident Cases for Each Disease by Year for the Total Ukraine Population
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Figure 4: Cumulative Incident Cases per Ukraine Population by 2025 and 2035.
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CHD COPD Lung Caner Stroke TOTAL

Scenario 0 
2025
Scenario 0 
2035

Scenario 1 
2025
Scenario 1 
2035

CHD COPD Lung Cancer Stroke Total

Year 2025 35252[+-4908] 10263[+-2677] 6247[+-1338] 4462[+-2677] 56224[±6341]

Year 2035 78092[+-7586] 25881[+-3123] 14725[+-1784] 8032[+-3569] 126730[±9123]

Table 8:  Cumulative Incident Cases Avoided Relative to Scenario 0 for the Ukraine Population 
   by 2025 and 2035
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Figure 4: Cumulative Incident Cases per Ukraine Population by 2025 and 2035.

Figure 5: Cumulative Incident Cases Avoided.
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Incident and Attributable Incident Cases per Year

Table 9 presents the incidence rates per Ukraine population, and Table 10 
shows the incidence rate attributable to smoking per Ukraine population by 
year for each disease. Figure 7 presents the incident cases by scenario for 2025 
by disease. The blue bars show incident cases and red bars show incident 
cases attributable to smoking in the specified year per Ukraine population. For 
scenario 1, the cases attributable to smoking contribute a smaller portion to 
the overall new cases when compared with baseline (scenario 0). This is to be 
expected, since the scenario is impacting smokers, so we would expect the 
avoided cases attributable to smoking to increase over time. 

CHD COPD Lung Cancer Stroke Total

Year 
2025

Sc 0 398492[+-1338] 70059[+-446] 20080[+-446] 100404[+-446] 589035[±1545]

Sc 1 394476[+-1338] 68274[+-446] 19634[+-446] 99957[+-446] 582341[±1545]

Year 
2035

Sc 0 439546[+-1338] 73629[+-446] 21419[+-446] 112006[+-446] 646600[±1545]

Sc 1 435976[+-1338] 71844[+-446] 20527[+-446] 112452[+-892] 640799[±1727]

Table 9:  Incident Cases in the Total Population per Year
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Figure 6: Incident Cases in Ukraine in 2025 and 2035.
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Scenario 0 
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2035

Scenario 1 
2025
Scenario 1 
2035

CHD COPD Lung Cancer Stroke Total

Year 
2025

Sc 0 145339[+-847] 35170[±424] 15678[±424] 22034[±424] 218221[±1121]

Sc 1 138983[+-847] 33051[±424] 15254[±424] 21187[±424] 208475[±1121]

Year 
2035

Sc 0 148664[+-787] 36183[±393] 15338[±393] 22418[±393] 222603[±1041]

Sc 1 142371[+-787] 33823[±393] 14552[±393] 21238[±393] 211984[±1041]

Table 10:  Attributable Incident Cases per Year
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Figure 6: Incident Cases in Ukraine in 2025 and 2035.

Figure 7: Attributable Incident Cases per Ukraine Population  
                  in the Years 2025 and 2035.
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Figure 8: Incident and Attributable Incident Cases in 2025 for  
   Baseline and Scenario 1 by Disease. 
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Premature Deaths 

Table 11 presents the premature deaths, premature deaths avoided, and 
cumulative premature deaths avoided in the total Ukraine population relative 
to scenario 0. The results show that, by 2025, there will be 6,372 premature 
deaths averted given the scenario 1 tax increase. By 2035, this increases 
to 29,172 premature deaths averted for scenario 1. Figure 8 presents the 
cumulative premature deaths avoided by scenario for 2025 and 2035. 

Premature deaths Premature deaths 
avoided Cumulative premature deaths avoided

Year 2025
Sc 0 307204 NA NA

Sc 1 305086 2119 6372

Year 2035
Sc 0 328004 NA NA

Sc 1 326824 1180 29172

Table 11:  Premature Mortality in the Total Ukraine Population

Figure 9: Cumulative Premature Deaths Avoided in the  
                   Ukraine Population by 2025 and 2035. 
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Potential Years of Life Lost

Table 12 presents the cumulative potential years of life lost (PYLL) for each 
scenario by year in the total Ukraine population. By 2025, scenario 1 is 
predicted to avoid 267,098 PYLL relative to baseline. 
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Year Sc 0 Sc 1 PYLL avoided Sc1 rel 0

2025 47173316 47124394 48923

2035 92950950 92683852 267098

Table 12:  Cumulative PYLL by scenario and year, and PYLL avoided due to scenario 1
                    relative to scenario 0

Direct Costs Avoided

Table 13 presents the cumulative direct healthcare costs avoided for scenario 1 
relative to scenario 0. Relative to scenario 0, scenario 1 results in the avoidance 
of the following direct healthcare costs by disease: CHD (UAH1.1bn/US$130 
million3), followed by COPD (UAH 0.16bn/US$25 million). 

CHD COPD Lung Cancer Stroke Total

Year 
2025

Sc 1 rel 0
408.37        

[+-0.06]
26.16          

[+-0.06]
54.05          

[+-0.06]
53.65         

[+-0.06]
542.22        

[+-0.12]
Year 
2035

Sc 1 rel 0
1133.1        

[+-0.08]
160.54        

[+-0.08]
143.35        

[+-0.08]
108.82       

[+-0.08]
1545.82     
[+-0.16]

Table 13:  Direct Cumulative Healthcare Costs Avoided (UAH millions)

Figure 10: Direct Cumulative Healthcare Costs Avoided (UAH millions) 
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As expected, discounting at 5 percent has a large impact on the cumulative 
direct costs avoided by 2025 and 2035. For example, scenario 1 is predicted 
to result in 399 million UAH avoided by 2025, compared to 542 million UAH 
avoided by 2025 without discounting. The results are presented in Table 14.

CHD COPD Lung Cancer Stroke Total

Year 
2025

Sc 1 rel 0 301.18 16.66 40.76 40.13 398.74

Year 
2035

Sc 1 rel 0 660.51 82.23 85.24 68.36 896.34

Table 14:  Direct Cumulative Healthcare Costs Avoided (UAH millions) (with 5 percent discounting)

Premature Mortality Costs Avoided

Table 14 presents the premature mortality costs avoided, relative to baseline. 
In 2035 alone, UAH 1.97 billion (US$82.7 million) premature mortality costs 
could be avoided. Cumulatively, by 2035, UAH 16.5 billion (US$695 million) 
premature mortality costs could be avoided relative to baseline.

PM costs avoided Cumulative costs avoided

Year 2025 206 3568.4

Year 2035 1968.3 16536.4

Table 15:  Premature Mortality Costs Avoided (UAH millions)
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Discussion

This study explored the impact of a one-time tobacco tax increase in Ukraine 
on the future burden of four smoking-related diseases through 2035. The 
results showed that small changes in smoking prevalence in one year can have 
large impacts in terms of disease incidence and premature mortality cases 
avoided into the future. Our results show that implementation of a one-off tax 
has an impact on smoking-related health burden, but highlights the need for 
continuous tobacco control measures, if smoking prevalence is to continue to 
decrease and have sizeable impacts on related disease occurrence. 

As well as benefits in terms of morbidity, particularly CHD cases avoided, 
we observe large savings in terms of premature mortality and potential 
years of life lost. This is important, since Ukraine is experiencing a decreasing 
population over time, and a lower life expectancy compared to the EU 
average of 78 for males and around 83 for females (40). Tobacco taxation is one 
important step to improving life expectancy in Ukraine, especially amongst 
men, whose smoking prevalence is high. 

The study included just four smoking-related diseases (CHD, COPD, stroke, lung 
cancer). However, we know that smoking is responsible for many more diseases, 
and harms almost every organ in the body (41). Therefore, we are likely to see 
much wider epidemiological benefits than those observed here. Future work 
could update this study by including additional smoking-related diseases. 

While the microsimulation method is advantageous in NCD modeling, one key 
disadvantage is that the model is data intensive. Fortuitously, during the period 
of the study, the Global Burden of Disease team published an online database 
that included many of the data inputs that were required (9). While country-
specific data are preferable, and the GBD is based on modeled estimates and 
recommended as a cross-country comparative tool, few other data were 
available for Ukraine. Inter alia, there were neither survival data nor relative risks 
specific for Ukraine available. Once better data become available, the model 
can easily be updated. 

No data on indirect costs such as productivity losses by disease were 
available. Large savings to the health system were observed with just a small 
change in smoking prevalence. However, wider societal costs such as losses 
in productivity are likely to be higher than those reflected here, making a 
stronger case for the implementation of regular tax hikes for tobacco control 
(42). If indirect cost data by disease become available, then the model can 
once again easily be updated in the future. 
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One notable limitation of our scenario methodology is that smokers were 
moved to the never-smokers category to account for changes in uptake 
due to the tax. While this is not realistic, it was the only solution by which to 
model change in uptake within the total population (and ensure we maintain 
100 percent of people in the population). This approach could result in an 
underestimation of the health impact of a tobacco tax increase. This effect 
could arise, because some of those smokers who become never smokers may 
already have a smoking-related disease.

We know that social groups react differently to tax increases (43). Due to small 
sample sizes, it was not possible to model the long-term health impacts on 
different social groups within the microsimulation. However, we can infer from 
research conducted in Ukraine (43, 44) that the largest impact of taxation will 
be observed in the poorest social groups. This is important, since it means that 
tobacco taxation could contribute to reducing social inequalities in health. 
One specific limitation of any predictive model is that it does not take account 
of major future changes in circumstances, such as the behavior of the tobacco 
industry, or the introduction of new drugs or technologies. In theory, their 
effects can be estimated by altering parameters in the model, but these will 
significantly increase the degrees of uncertainty. However, they could be 
simulated as additional scenarios in the future relative to a “no change” scenario. 

At present, the model does not take account of multimorbidity and the joint 
effect of several risk factors on disease occurrence and related mortality. 
However, individuals can get more than one smoking-related disease in their 
lifetime. Future work could expand the scope of the model to take account of 
technological and economic changes and their potential effects, and also to 
model the clustering of risk factors and diseases in the same individuals. 
The model did not take account of passive smoking/secondhand smoke. 
Understanding the combined risk of smoking and passive smoking on later 
disease outcomes will enable us to model the combined impact of these risk 
factors on later disease outcomes. 

It was beyond the scope of this study, given the time constraints, to carry 
out an in-depth uncertainty and sensitivity analysis. We are aware that this 
is good practice; however, there is a lack of validated datasets by which to 
compare our outputs. Furthermore, the microsimulation is complex, relative to 
spreadsheet models, for example. It involves many thousands of calculations 
which are completed during the simulation of 50 million individuals. Given 
this complexity, local uncertainty analysis would demand many thousands of 
consecutive runs and would require a supercomputer to complete the exercise 
in a realistic time scale. However, we did carry out a small sensitivity analysis of 
the costs – running the model with and without a 5 percent discount rate. 
Further work should develop more sophisticated interventions, for example, 
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individuals of different ages could be affected differently by the intervention. 
It was beyond the scope of this study to include this development within the 
microsimulation. However, a prototype, user-friendly tool has been developed 
for Ukraine that enables the user to select different age cohorts (as opposed to 
a population distribution of individuals) and run simulations to quantify health 
and cost impacts by population groups. 

Further work should also explore the impact of other potential policies in 
Ukraine, such as a tobacco duty escalator, as well as a combination of tobacco-
control measures including smoking cessation services. 

This study complements that which was carried out using the TaXSiM model 
and shows the health and related economic benefits of increasing tobacco tax 
in Ukraine. Even small reductions in smoking prevalence in one year will have 
long-term impacts on disease incidence and subsequent health costs. 
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1 Depending on the 
circumstances, this assumption 
will be more or less accurate 
and more or less necessary. In 
general, it is both extremely 
useful and accurate. For simple 
surveys, the individual Bayesian 
prior and posterior probabilities 
are Beta distributions – the 
likelihood being binomial. For 
reasonably large samples, 
the approximation of the 
Beta distributions by normal 
distributions is both legitimate 
and a practical necessity. For 
complex, multi-PSU, stratified 
surveys, it is again assumed 
that these base probabilities 
are approximately normally 
distributed and, again, it is an 
assumption that makes the 
analysis tractable. Depending on 
the nature of the raw data set 
it may be possible to use non-
parametric statistical methods 
for this analysis.

Appendix 1. Technical Appendix

1. Microsimulation Framework

Our simulation consists of two modules. The first module calculates the 
predictions of risk factor trends over time based on data from rolling cross-
sectional studies. The second module performs the microsimulation of a 
virtual population, generated with demographic characteristics matching 
those of the observed data. The health trajectory of each individual from 
the population is simulated over time allowing them to contract, survive, or 
die from a set of diseases or injuries related to the analyzed risk factors. The 
detailed description of the two modules is presented below.

1.1 Module One: Predictions of Smoking Prevalence Over Time
For the risk factor (RF), let N be the number of categories for a given risk 
factor, e.g. N = 3 for smoking. Let k = 1, 2, …, N number these categories, and
denote the prevalence of the RF that corresponds to the category    at time 
We estimate             using a multinomial logistic regression model with 
prevalence of RF category k as the outcome, and time t as a single explanatory 
variable. For               we have

The prevalence of the first category is obtained by using the normalization 
constraint                       =1. Solving equation (1.1) for           , we obtain

which respects all constraints on the prevalence values, i.e. normalization and 
[0, 1] bounds.

1.1.1 Multinomial logistic regression for smoking prevalence
Measured data consist of sets of probabilities, with their variances, at specific 
time values (typically the year of the survey). For any particular time, the sum 
of these probabilities is unity. Typically such data might be the probabilities 
of smoker, ex-smoker, never smokers as they are extracted from the survey 
data set. Each data point is treated as a normally distributed1 random variable; 

1	

	

Appendix	1.	Technical	Appendix	
	

1 Microsimulation	Framework	
Our	simulation	consists	of	two	modules.	The	first	module	calculates	the	predictions	of	risk	factor	

trends	over	time	based	on	data	from	rolling	cross-sectional	studies.	The	second	module	performs	

the	microsimulation	of	a	virtual	population,	generated	with	demographic	characteristics	matching	

those	of	the	observed	data.	The	health	trajectory	of	each	individual	from	the	population	is	simulated	

over	time	allowing	them	to	contract,	survive,	or	die	from	a	set	of	diseases	or	injuries	related	to	the	

analyzed	risk	factors.	The	detailed	description	of	the	two	modules	is	presented	below.	

1.1 Module	One:	Predictions	of	Smoking	Prevalence	Over	Time	
For	the	risk	factor	(RF),	let	N	be	the	number	of	categories	for	a	given	risk	factor,	e.g.	N	=	3	for	

smoking.	Let	!	=	1,	2,	…,	N	number	these	categories,	and	#$(&)	denote	the	prevalence	of	the	RF	that	

corresponds	to	the	category	!	at	time	t.	We	estimate	#$(&)	using	a	multinomial	logistic	regression	

model	with	prevalence	of	RF	category	!	as	the	outcome,	and	time	t	as	a	single	explanatory	variable.	

For	! < ),	we	have	

	
( )
( ) 0 1
1

ln k kkp t
t

p t
b b

æ ö
= +ç ÷

è ø
		 (1.1)	

The	prevalence	of	the	first	category	is	obtained	by	using	the	normalization	constraint	 #!(&)*
$+, =

1.	Solving	equation	(1.1)	for	#$(&),	we	obtain	
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which	respects	all	constraints	on	the	prevalence	values,	i.e.	normalization	and	[0,	1]	bounds.	

1.1.1 Multinomial	logistic	regression	for	smoking	prevalence	
Measured	data	consist	of	sets	of	probabilities,	with	their	variances,	at	specific	time	values	(typically	

the	year	of	the	survey).	For	any	particular	time,	the	sum	of	these	probabilities	is	unity.	Typically	such	

data	might	be	the	probabilities	of	smoker,	ex-smoker,	never	smokers	as	they	are	extracted	from	the	

survey	data	set.	Each	data	point	is	treated	as	a	normally	distributed1	random	variable;	together	they	

are	a	set	of	N	groups	(number	of	years)	of	K	probabilities	{{ti,	µki,	ski	|kÎ[0,K-1]}	|	iÎ[0,N-1]}.	For	

each	year	the	set	of	K	probabilities	form	a	distribution	–	their	sum	is	equal	to	unity.	

																																																													
1
	Depending	on	the	circumstances,	this	assumption	will	be	more	or	less	accurate	and	more	or	less	necessary.	In	

general,	it	is	both	extremely	useful	and	accurate.	For	simple	surveys,	the	individual	Bayesian	prior	and	

posterior	probabilities	are	Beta	distributions	–	the	likelihood	being	binomial.	For	reasonably	large	samples,	the	

approximation	of	the	Beta	distributions	by	normal	distributions	is	both	legitimate	and	a	practical	necessity.	For	

complex,	multi-PSU,	stratified	surveys,	it	is	again	assumed	that	these	base	probabilities	are	approximately	

normally	distributed	and,	again,	it	is	an	assumption	that	makes	the	analysis	tractable.	Depending	on	the	nature	

of	the	raw	data	set	it	may	be	possible	to	use	non-parametric	statistical	methods	for	this	analysis.		
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together they are a set of N groups (number of years) of K probabilities
                                                                   For each year the set of K probabilities 
form a distribution – their sum is equal to unity.

The regression consists of fitting a set of logistic functions 
to these data – one function for each k-value. At each time value, the sum of 
these functions is unity. Thus, for example, when measuring smoking in the 
three states already mentioned, the k = 0 regression function represents the 
probability of being a never smoker over time, k = 1 the probability of being 
and ex-smoker, and k = 2 the probability of being a smoker.

The regression equations are most easily derived from a familiar least square 
minimization. In the following equation set the weighted difference between 
the measured and predicted probabilities is written as S; the logistic regression 
functions                  are chosen to be ratios of sums of exponentials (This is 
equivalent to modeling the log probability ratios,             as linear functions  
of time).

The parameters A0, a0 and b0 are all zero and are used merely to preserve the 
symmetry of the expressions and their manipulation. For a K-dimensional set 
of probabilities, there will be 2(K-1) regression parameters to be determined.   

For a given dimension K there are K-1 independent functions     – the 
remaining function being determined from the requirement that the complete 
set of K form a distribution and sum to unity.

Note that the parameterization ensures the necessary requirement that each 
     be interpretable as a probability – a real number lying between 0 and 1.
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general,	it	is	both	extremely	useful	and	accurate.	For	simple	surveys,	the	individual	Bayesian	prior	and	
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of	the	raw	data	set	it	may	be	possible	to	use	non-parametric	statistical	methods	for	this	analysis.		

2	

	

The	regression	consists	of	fitting	a	set	of	logistic	functions	{pk(a,	b,	t)|kÎ[0,K-1]}	to	these	data	–	one	

function	for	each	k-value.	At	each	time	value,	the	sum	of	these	functions	is	unity.	Thus,	for	example,	

when	measuring	smoking	in	the	three	states	already	mentioned,	the	k	=	0	regression	function	

represents	the	probability	of	being	a	never	smoker	over	time,	k	=	1	the	probability	of	being	and	ex-

smoker,	and	k	=	2	the	probability	of	being	a	smoker.	

The	regression	equations	are	most	easily	derived	from	a	familiar	least	square	minimization.	In	the	

following	equation	set	the	weighted	difference	between	the	measured	and	predicted	probabilities	is	

written	as	S;	the	logistic	regression	functions	pk(a,b;t)	are	chosen	to	be	ratios	of	sums	of	

exponentials	(This	is	equivalent	to	modeling	the	log	probability	ratios,	pk/p0,	as	linear	functions	of	

time).	
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The	 parameters	 A0,	 a0	 and	 b0	 are	 all	 zero	 and	 are	 used	 merely	 to	 preserve	 the	 symmetry	 of	 the	
expressions	 and	 their	 manipulation.	 For	 a	 K-dimensional	 set	 of	 probabilities,	 there	 will	 be	 2(K-1)	
regression	parameters	to	be	determined.				

For	a	given	dimension	K	there	are	K-1	independent	functions	pk	–	the	remaining	function	being	

determined	from	the	requirement	that	the	complete	set	of	K	form	a	distribution	and	sum	to	unity.	

Note	that	the	parameterization	ensures	the	necessary	requirement	that	each	pk	be	interpretable	as	

a	probability	–	a	real	number	lying	between	0	and	1.	

The	minimum	of	the	function	S	is	determined	from	the	equations		
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represents	the	probability	of	being	a	never	smoker	over	time,	k	=	1	the	probability	of	being	and	ex-

smoker,	and	k	=	2	the	probability	of	being	a	smoker.	

The	regression	equations	are	most	easily	derived	from	a	familiar	least	square	minimization.	In	the	

following	equation	set	the	weighted	difference	between	the	measured	and	predicted	probabilities	is	

written	as	S;	the	logistic	regression	functions	pk(a,b;t)	are	chosen	to	be	ratios	of	sums	of	

exponentials	(This	is	equivalent	to	modeling	the	log	probability	ratios,	pk/p0,	as	linear	functions	of	
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The	 parameters	 A0,	 a0	 and	 b0	 are	 all	 zero	 and	 are	 used	 merely	 to	 preserve	 the	 symmetry	 of	 the	
expressions	 and	 their	 manipulation.	 For	 a	 K-dimensional	 set	 of	 probabilities,	 there	 will	 be	 2(K-1)	
regression	parameters	to	be	determined.				

For	a	given	dimension	K	there	are	K-1	independent	functions	pk	–	the	remaining	function	being	

determined	from	the	requirement	that	the	complete	set	of	K	form	a	distribution	and	sum	to	unity.	
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The minimum of the function S is determined from the equations 

noting the reations

The values of the vectors a, b that satisfy these equations are denoted           . 
They provide the trend lines                   , for the separate probabilities. The 
confidence intervals for the trend lines are derived most easily from the 
underlying Bayesian analysis of the problem.

1.1.2  Bayesian interpretation
The 2K-2 regression parameters {a,b} are regarded as random variables 
whose posterior distribution is proportional to the function exp(-S(a,b)). The 
maximum likelihood estimate of this probability distribution function, the 
minimum of the function S, is obtained at the values          . Other properties of 
the (2K-2)-dimensional probability distribution function are obtained by first 
approximating it as a (2K-2)-dimensional normal distribution whose mean is 
the maximum likelihood estimate. This amounts to expanding the function 
S(a,b) in a Taylor series as far as terms quadratic in the differences
about the maximum likelihood estimate                    . Hence
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The	(2K-2)-dimensional	covariance	matrix	P	is	the	inverse	of	the	appropriate	expansion	coefficients.	

This	matrix	is	central	to	the	construction	of	the	confidence	limits	for	the	trend	lines.			

1.1.3 Estimation	of	the	confidence	intervals	
The	logistic	regression	functions	pk(t)	can	be	approximated	as	a	normally	distributed	time-varying	

random	variable	 ( ) ( )( )ttpN kk
2,ˆ s 	by	expanding	pk	about	its	maximum	likelihood	estimate	(the	trend	

line)	 ( ) ( )tptpk ,ˆ,ˆˆ ba= 	
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Denoting	mean	values	by	angled	brackets,	the	variance	of	pk	is	thereby	approximated	as	
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When	K=3	this	equation	can	be	written	as	the	4-dimensional	inner	product	
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When	K=3	this	equation	can	be	written	as	the	4-dimensional	inner	product	
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The	regression	consists	of	fitting	a	set	of	logistic	functions	{pk(a,	b,	t)|kÎ[0,K-1]}	to	these	data	–	one	

function	for	each	k-value.	At	each	time	value,	the	sum	of	these	functions	is	unity.	Thus,	for	example,	

when	measuring	smoking	in	the	three	states	already	mentioned,	the	k	=	0	regression	function	

represents	the	probability	of	being	a	never	smoker	over	time,	k	=	1	the	probability	of	being	and	ex-

smoker,	and	k	=	2	the	probability	of	being	a	smoker.	

The	regression	equations	are	most	easily	derived	from	a	familiar	least	square	minimization.	In	the	

following	equation	set	the	weighted	difference	between	the	measured	and	predicted	probabilities	is	

written	as	S;	the	logistic	regression	functions	pk(a,b;t)	are	chosen	to	be	ratios	of	sums	of	

exponentials	(This	is	equivalent	to	modeling	the	log	probability	ratios,	pk/p0,	as	linear	functions	of	

time).	
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The	 parameters	 A0,	 a0	 and	 b0	 are	 all	 zero	 and	 are	 used	 merely	 to	 preserve	 the	 symmetry	 of	 the	
expressions	 and	 their	 manipulation.	 For	 a	 K-dimensional	 set	 of	 probabilities,	 there	 will	 be	 2(K-1)	
regression	parameters	to	be	determined.				

For	a	given	dimension	K	there	are	K-1	independent	functions	pk	–	the	remaining	function	being	

determined	from	the	requirement	that	the	complete	set	of	K	form	a	distribution	and	sum	to	unity.	

Note	that	the	parameterization	ensures	the	necessary	requirement	that	each	pk	be	interpretable	as	

a	probability	–	a	real	number	lying	between	0	and	1.	

The	minimum	of	the	function	S	is	determined	from	the	equations		
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The (2K-2)-dimensional covariance matrix P is the inverse of the appropriate 
expansion coefficients. This matrix is central to the construction of the 
confidence limits for the trend lines.  

1.1.3  Estimation of the confidence intervals
The logistic regression functions           can be approximated as a normally 
distributed time-varying random variable                              by expanding 
about its maximum likelihood estimate (the trend line)  

Denoting mean values by angled brackets, the variance of      is thereby 
approximated as

When K=3 this equation can be written as the 4-dimensional inner product

where                                                The 95% confidence interval for            is 
centred given as 
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random	variable	 ( ) ( )( )ttpN kk
2,ˆ s 	by	expanding	pk	about	its	maximum	likelihood	estimate	(the	trend	

line)	 ( ) ( )tptpk ,ˆ,ˆˆ ba= 	

	

( ) ( )
( ) ( ) ( )ˆˆ

ˆ ˆˆ ˆ, , , ,

ˆ
ˆ ˆ, ...ˆ

k k

k a kb

p t p t

p t p t

= + - + -

-æ ö
= + Ñ Ñ +ç ÷

-è ø

a b a a a b b b

a a

b b

		 (1.8)	

Denoting	mean	values	by	angled	brackets,	the	variance	of	pk	is	thereby	approximated	as	
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When	K=3	this	equation	can	be	written	as	the	4-dimensional	inner	product	 3	

	

The	values	of	the	vectors	a,	b	that	satisfy	these	equations	are	denoted	 b,a ˆˆ .	They	provide	the	trend	
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(2K-2)-dimensional	normal	distribution	whose	mean	is	the	maximum	likelihood	estimate.	This	

amounts	to	expanding	the	function	S(a,b)	in	a	Taylor	series	as	far	as	terms	quadratic	in	the	

differences	 ( ) ( )bb,aa ˆˆ -- 	about	the	maximum	likelihood	estimate	 ( )b,aS ˆˆˆ Sº .	Hence	
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The	(2K-2)-dimensional	covariance	matrix	P	is	the	inverse	of	the	appropriate	expansion	coefficients.	

This	matrix	is	central	to	the	construction	of	the	confidence	limits	for	the	trend	lines.			

1.1.3 Estimation	of	the	confidence	intervals	
The	logistic	regression	functions	pk(t)	can	be	approximated	as	a	normally	distributed	time-varying	

random	variable	 ( ) ( )( )ttpN kk
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Denoting	mean	values	by	angled	brackets,	the	variance	of	pk	is	thereby	approximated	as	
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When	K=3	this	equation	can	be	written	as	the	4-dimensional	inner	product	
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where	 ( )( )jjiicdij ddccP ˆˆ --º .	The	95%	confidence	interval	for	pk(t)	is	centred	given	as	

( ) ( ) ( ) ( )[ ]ttttp kkk ss 96.1p	,96.1ˆ k +- .	

1.2 Module	Two:	Microsimulation	

1.2.1 Microsimulation	initialization:	Birth,	disease	and	death	models	
Simulated	people	are	generated	with	the	correct	demographic	statistics	in	the	simulation’s	start-

year.	In	this	year,	women	are	stochastically	allocated	the	number	and	years	of	birth	of	their	children	

–	these	are	generated	from	known	fertility	and	mother’s	age	at	birth	statistics	(valid	in	the	start-

year).	If	a	woman	has	children,	then	those	children	are	generated	as	members	of	the	simulation	in	

the	appropriate	birth	year.	

The	microsimulation	is	provided	with	a	list	of	relevant	diseases.	These	diseases	used	the	best	

available	incidence,	mortality,	survival,	relative	risk	and	prevalence	statistics	(by	age	and	sex).	

Individuals	in	the	model	are	simulated	from	their	year	of	birth	(which	may	be	before	the	start	year	of	

the	simulation).	In	the	course	of	their	lives,	simulated	people	can	die	from	one	of	the	diseases	

caused	by	smoking	that	they	might	have	acquired	or	from	some	other	cause.	The	probability	that	a	

person	of	a	given	age	and	sex	dies	from	a	cause	other	than	the	disease	are	calculated	in	terms	of	

known	death	and	disease	statistics	valid	in	the	start	year.	It	is	constant	over	the	course	of	the	

simulation.	The	survival	rates	from	tobacco-related	diseases	will	change	as	a	consequence	of	the	

changing	distribution	of	smoking	level	in	the	population.		

The	microsimulation	incorporates	a	sophisticated	economic	module.	The	module	employs	Markov-

type	simulation	of	long-term	health	benefits,	health	care	costs,	and	cost-effectiveness	of	specified	

interventions.	It	synthesizes	and	estimates	evidence	on	cost-effectiveness	analysis	and	cost-utility	

analysis.	The	model	can	be	used	to	project	the	differences	in	quality-adjusted	life	years	(QALYs),	

direct	and	indirect	lifetime	health-care	costs,	and,	as	a	consequence	of	interventions,	incremental	

cost	effectiveness	ratios	(ICERs)	over	a	specified	time	scale.	Outputs	can	be	discounted	for	any	

specific	discount	rate.	

The	section	provides	an	overview	of	the	initialization	of	the	microsimulation	model	and	will	be	

expanded	upon	in	the	next	sections.		
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The	(2K-2)-dimensional	covariance	matrix	P	is	the	inverse	of	the	appropriate	expansion	coefficients.	

This	matrix	is	central	to	the	construction	of	the	confidence	limits	for	the	trend	lines.			

1.1.3 Estimation	of	the	confidence	intervals	
The	logistic	regression	functions	pk(t)	can	be	approximated	as	a	normally	distributed	time-varying	

random	variable	 ( ) ( )( )ttpN kk
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Denoting	mean	values	by	angled	brackets,	the	variance	of	pk	is	thereby	approximated	as	
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When	K=3	this	equation	can	be	written	as	the	4-dimensional	inner	product	
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where	 ( )( )jjiicdij ddccP ˆˆ --º .	The	95%	confidence	interval	for	pk(t)	is	centred	given	as	
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1.2 Module	Two:	Microsimulation	

1.2.1 Microsimulation	initialization:	Birth,	disease	and	death	models	
Simulated	people	are	generated	with	the	correct	demographic	statistics	in	the	simulation’s	start-

year.	In	this	year,	women	are	stochastically	allocated	the	number	and	years	of	birth	of	their	children	

–	these	are	generated	from	known	fertility	and	mother’s	age	at	birth	statistics	(valid	in	the	start-

year).	If	a	woman	has	children,	then	those	children	are	generated	as	members	of	the	simulation	in	

the	appropriate	birth	year.	

The	microsimulation	is	provided	with	a	list	of	relevant	diseases.	These	diseases	used	the	best	

available	incidence,	mortality,	survival,	relative	risk	and	prevalence	statistics	(by	age	and	sex).	

Individuals	in	the	model	are	simulated	from	their	year	of	birth	(which	may	be	before	the	start	year	of	

the	simulation).	In	the	course	of	their	lives,	simulated	people	can	die	from	one	of	the	diseases	

caused	by	smoking	that	they	might	have	acquired	or	from	some	other	cause.	The	probability	that	a	

person	of	a	given	age	and	sex	dies	from	a	cause	other	than	the	disease	are	calculated	in	terms	of	

known	death	and	disease	statistics	valid	in	the	start	year.	It	is	constant	over	the	course	of	the	

simulation.	The	survival	rates	from	tobacco-related	diseases	will	change	as	a	consequence	of	the	

changing	distribution	of	smoking	level	in	the	population.		

The	microsimulation	incorporates	a	sophisticated	economic	module.	The	module	employs	Markov-

type	simulation	of	long-term	health	benefits,	health	care	costs,	and	cost-effectiveness	of	specified	

interventions.	It	synthesizes	and	estimates	evidence	on	cost-effectiveness	analysis	and	cost-utility	

analysis.	The	model	can	be	used	to	project	the	differences	in	quality-adjusted	life	years	(QALYs),	

direct	and	indirect	lifetime	health-care	costs,	and,	as	a	consequence	of	interventions,	incremental	

cost	effectiveness	ratios	(ICERs)	over	a	specified	time	scale.	Outputs	can	be	discounted	for	any	

specific	discount	rate.	

The	section	provides	an	overview	of	the	initialization	of	the	microsimulation	model	and	will	be	

expanded	upon	in	the	next	sections.		
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Modeling the Long-Term Health and Cost Impacts of Reducing 
Smoking Prevalence through Tobacco Taxation in Ukraine

1.2   Module Two: Microsimulation

1.2.1 Microsimulation initialization: Birth, disease and death models
Simulated people are generated with the correct demographic statistics in 
the simulation’s start-year. In this year, women are stochastically allocated the 
number and years of birth of their children – these are generated from known 
fertility and mother’s age at birth statistics (valid in the start-year). If a woman 
has children, then those children are generated as members of the simulation 
in the appropriate birth year.

The microsimulation is provided with a list of relevant diseases. These 
diseases used the best available incidence, mortality, survival, relative risk and 
prevalence statistics (by age and sex). Individuals in the model are simulated 
from their year of birth (which may be before the start year of the simulation). 
In the course of their lives, simulated people can die from one of the diseases 
caused by smoking that they might have acquired or from some other cause. 
The probability that a person of a given age and sex dies from a cause other 
than the disease are calculated in terms of known death and disease statistics 
valid in the start year. It is constant over the course of the simulation. The 
survival rates from tobacco-related diseases will change as a consequence of 
the changing distribution of smoking level in the population. 

The microsimulation incorporates a sophisticated economic module. The 
module employs Markov-type simulation of long-term health benefits, health 
care costs, and cost-effectiveness of specified interventions. It synthesizes and 
estimates evidence on cost-effectiveness analysis and cost-utility analysis. 
The model can be used to project the differences in quality-adjusted life years 
(QALYs), direct and indirect lifetime health-care costs, and, as a consequence 
of interventions, incremental cost effectiveness ratios (ICERs) over a specified 
time scale. Outputs can be discounted for any specific discount rate.
The section provides an overview of the initialization of the microsimulation 
model and will be expanded upon in the next sections. 

1.2.2  Population models
Populations are implemented as instances of the TPopulation C++ class. The 
TPopulation class is created from a population (*.ppl) file. Usually a simulation 
will use only one population, but it can simultaneously process multiple 
populations (for example, different ethnicities within a national population).
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1.2.2.1  Population Editor
The Population Editor allows editing and testing of TPopulation objects. 

The population is created in the start year and propagated forwards in time 
by allowing females to give birth. An example population pyramid which can 
be used when initializing the model is shown in Figure 1. It shows the 2015 
population distribution in Ukraine used in the initialization of the model.

Figure 1: Population Pyramid in 2015 in Ukraine

Ukraine
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People within the model can die from specific diseases or from other causes. A 
disease file is created within the program to represent deaths from other causes. 
The following distributions are required by the Population Editor (Table 1).

Distribution name symbol note

MalesByAgeByYear
Input in year0 – probability of a male having 
age a

FemalesByAgeByYear
Input in year0 – probability of a female having 
age a

BirthsByAgeofMother
Input in year0 – conditional probability of a 
birth at age a| the mother gives birth.

NumberOfBirths
      TFR, Poisson distribution, probability of 
giving birth to n children

Table 1:  Summary of the Parameters Representing the Distribution Component
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1.2.2.2  Birth model
Any female in the childbearing years {AgeAtChild.lo, AgeAtChild.hi} is deemed 
capable of giving birth. The number of children, n, that she has in her life is 
dictated by the Poisson distribution               where the mean of the Poisson 
distribution is the Total Fertility Rate (TFR) parameter.2  

The probability that a mother (who does give birth) gives birth to a child at 
age a is determined from the BirthsByAgeOfMother distribution as
For any particular mother, the births of multiple children are treated as 
independent events, so that the probability that a mother who produces N 
children produces n of them at age a is given as the Binomially distributed 
variable,

The probability that the mother gives birth to n children at age a is

Performing the summation in this equation gives the simplifying result that 
the probability pb(n at a) is itself Poisson distributed with mean parameter

Thus, on average, a mother at age a will produce                children in that year.

The gender of the children3 is determined by the probability 
In the baseline model this is taken to be the probability 

The Population Editor menu item Population Editor\Tools\Births\show random 
birthList creates an instance of the TPopulation class and uses it to generate 
and list a (selectable) sample of mothers and the years in which they give birth.

1.2.2.3  Deaths from modeled diseases
The simulation models any number of specified diseases, some of which may be 
fatal. In the start year, the simulation’s death model uses the diseases’ own mortality 
statistics to adjust the probabilities of death by age and gender. In the start year, the 
net effect is to maintain the same probability of death by age and gender as before; 
in subsequent years, however, the rates at which people die from modeled diseases 
will change as modeled risk factors change. The population dynamics sketched 
above will be only an approximation to the simulated population’s dynamics. The 
latter will be known only on completion of the simulation.
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Performing	the	summation	in	this	equation	gives	the	simplifying	result	that	the	probability	pb(n	at	a)	

is	itself	Poisson	distributed	with	mean	parameter	4#2 0 ,	
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Thus,	on	average,	a	mother	at	age	0	will	produce	4#2 0 	children	in	that	year.	

The	gender	of	the	children3	is	determined	by	the	probability	pmale=1-pfemale.	In	the	baseline	model	this	

is	taken	to	be	the	probability	Nm/(Nm+Nf).		

The	Population	Editor	menu	item	Population	Editor\Tools\Births\show	random	birthList	creates	an	

instance	of	the	TPopulation	class	and	uses	it	to	generate	and	list	a	(selectable)	sample	of	mothers	

and	the	years	in	which	they	give	birth.	

1.2.2.3 Deaths	from	modeled	diseases	
The	simulation	models	any	number	of	specified	diseases,	some	of	which	may	be	fatal.	In	the	start	

year,	the	simulation’s	death	model	uses	the	diseases’	own	mortality	statistics	to	adjust	the	

probabilities	of	death	by	age	and	gender.	In	the	start	year,	the	net	effect	is	to	maintain	the	same	

probability	of	death	by	age	and	gender	as	before;	in	subsequent	years,	however,	the	rates	at	which	

people	die	from	modeled	diseases	will	change	as	modeled	risk	factors	change.	The	population	

dynamics	sketched	above	will	be	only	an	approximation	to	the	simulated	population’s	dynamics.	The	

latter	will	be	known	only	on	completion	of	the	simulation.	

1.2.3 The	risk	factor	model	
The	distribution	of	risk	factors	(RF)	in	the	population	is	estimated	using	regression	analysis	stratified	

by	both	sex	S	=	{male,	female}	and	age	group	A	=	{0-9,	10-19,	...,	70-79,	80+}.	The	fitted	trends	are	
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Performing	the	summation	in	this	equation	gives	the	simplifying	result	that	the	probability	pb(n	at	a)	

is	itself	Poisson	distributed	with	mean	parameter	4#2 0 ,	
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1.2.3  The risk factor model
The distribution of risk factors (RF) in the population is estimated using 
regression analysis stratified by both sex S = {male, female} and age group A 
= {0-9, 10-19, ..., 70-79, 80+}. The fitted trends are extrapolated to forecast the 
distribution of each RF category in the future. For each sex-and-age-group 
stratum, the set of cross-sectional, time-dependent, discrete distributions
                                                         is used to manufacture RF trends for individual 
members of the population. 

We model different risk factors, some of which are continuous (such as BMI) 
and some are categorical (smoking status).

1.2.3.1  Categorical risk factors
Smoking is the categorical risk factor. Each individual in the population may 
belong to one of the three possible smoking categories {never smoked, ex-
smoker, smoker} with their probabilities {p0, p1, p2}. These states are updated on 
receipt of the information that the person is either a smoker or a non-smoker. 
They will be a never smoker or an ex-smoker depending on their original state 
(an ex-smoker can never become a never smoker).

The complete set of longitudinal smoking trajectories and the probabilities of 
their happening is generated for the simulation years by allowing all possible 
transitions between smoking categories:

{never smoked}  — {never smoked, smoker}  
{ex-smoker} — {ex-smoker, smoker}  
{smoker} — {ex-smoker, smoker}   

When the probability of being a smoker is p the allowed transitions are 
summarized in the state update equation:

After the final simulation year, the smoking trajectories are completed until the 
person’s maximum possible age of 110 by supposing that their smoking state 
stays fixed. The life expectancy calculation will consist in summing over the 
probability of being alive in each possible year of life.

In the initial year of the simulation, a person may be in one of the three 
smoking categories; after N updates there will be 3 x 2N possible trajectories. 
These trajectories will each have a calculated probability of occurring; the sum 
of these probabilities is 1.
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extrapolated	to	forecast	the	distribution	of	each	RF	category	in	the	future.	For	each	sex-and-age-

group	stratum,	the	set	of	cross-sectional,	time-dependent,	discrete	distributions	5 = {#$ & |! =
1, …); 	& > 0},	is	used	to	manufacture	RF	trends	for	individual	members	of	the	population.		

We	model	different	risk	factors,	some	of	which	are	continuous	(such	as	BMI)	and	some	are	

categorical	(smoking	status).	

1.2.3.1 Categorical	risk	factors	
Smoking	is	the	categorical	risk	factor.	Each	individual	in	the	population	may	belong	to	one	of	the	

three	possible	smoking	categories	{never	smoked,	ex-smoker,	smoker}	with	their	probabilities	{p0,	p1,	
p2}.	These	states	are	updated	on	receipt	of	the	information	that	the	person	is	either	a	smoker	or	a	

non-smoker.	They	will	be	a	never	smoker	or	an	ex-smoker	depending	on	their	original	state	(an	ex-

smoker	can	never	become	a	never	smoker).	

The	complete	set	of	longitudinal	smoking	trajectories	and	the	probabilities	of	their	happening	is	

generated	for	the	simulation	years	by	allowing	all	possible	transitions	between	smoking	categories:	

{never	smoked}		®	{never	smoked,	smoker}		 	

{ex-smoker}	®	{ex-smoker,	smoker}	 	 	

{smoker}	®	{ex-smoker,	smoker}		 	 	

When	the	probability	of	being	a	smoker	is	p	the	allowed	transitions	are	summarized	in	the	state	

update	equation:	
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After	the	final	simulation	year,	the	smoking	trajectories	are	completed	until	the	person’s	maximum	

possible	age	of	110	by	supposing	that	their	smoking	state	stays	fixed.	The	life	expectancy	calculation	

will	consist	in	summing	over	the	probability	of	being	alive	in	each	possible	year	of	life.	

In	the	initial	year	of	the	simulation,	a	person	may	be	in	one	of	the	three	smoking	categories;	after	N	

updates	there	will	be	3	´	2N	possible	trajectories.	These	trajectories	will	each	have	a	calculated	

probability	of	occurring;	the	sum	of	these	probabilities	is	1.	

In	each	year	the	probability	of	being	a	smoker	or	a	non-smoker	will	depend	on	the	forecast	smoking	

scenario,	which	provides	exactly	that	information.	Note	that	these	states	are	two-dimensional	and	

cross-sectional	{non-smoking,	smoking},	and	they	are	turned	into	three-dimensional	states	{never	
smoked,	ex-smoker,	smoker}	as	described	above.	The	time	evolution	of	the	three-dimensional	states	

are	the	smoking	trajectories	necessary	for	the	computation	of	disease-table	disease	and	death	

probabilities.	

1.2.3.2 Smoking	
The	microsimulation	framework	applied	to	smoking	enables	us	to	measure	the	future	health	impact	

of	changes	in	rates	of	tobacco	consumption.	This	includes	the	impact	of	giving	up	smoking	on	the	

following	diseases:	i)	Chronic	obstructive	pulmonary	disease	(COPD),	ii)	Coronary	heart	disease	(or	
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After	the	final	simulation	year,	the	smoking	trajectories	are	completed	until	the	person’s	maximum	

possible	age	of	110	by	supposing	that	their	smoking	state	stays	fixed.	The	life	expectancy	calculation	

will	consist	in	summing	over	the	probability	of	being	alive	in	each	possible	year	of	life.	

In	the	initial	year	of	the	simulation,	a	person	may	be	in	one	of	the	three	smoking	categories;	after	N	

updates	there	will	be	3	´	2N	possible	trajectories.	These	trajectories	will	each	have	a	calculated	

probability	of	occurring;	the	sum	of	these	probabilities	is	1.	

In	each	year	the	probability	of	being	a	smoker	or	a	non-smoker	will	depend	on	the	forecast	smoking	

scenario,	which	provides	exactly	that	information.	Note	that	these	states	are	two-dimensional	and	

cross-sectional	{non-smoking,	smoking},	and	they	are	turned	into	three-dimensional	states	{never	
smoked,	ex-smoker,	smoker}	as	described	above.	The	time	evolution	of	the	three-dimensional	states	

are	the	smoking	trajectories	necessary	for	the	computation	of	disease-table	disease	and	death	

probabilities.	

1.2.3.2 Smoking	
The	microsimulation	framework	applied	to	smoking	enables	us	to	measure	the	future	health	impact	

of	changes	in	rates	of	tobacco	consumption.	This	includes	the	impact	of	giving	up	smoking	on	the	

following	diseases:	i)	Chronic	obstructive	pulmonary	disease	(COPD),	ii)	Coronary	heart	disease	(or	
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In each year the probability of being a smoker or a non-smoker will depend 
on the forecast smoking scenario, which provides exactly that information. 
Note that these states are two-dimensional and cross-sectional {non-smoking, 
smoking}, and they are turned into three-dimensional states {never smoked, 
ex-smoker, smoker} as described above. The time evolution of the three-
dimensional states are the smoking trajectories necessary for the computation 
of disease-table disease and death probabilities.

1.2.3.2  Smoking
The microsimulation framework applied to smoking enables us to measure 
the future health impact of changes in rates of tobacco consumption. This 
includes the impact of giving up smoking on the following diseases: i) 
Chronic obstructive pulmonary disease (COPD), ii) Coronary heart disease 
(or Myocardial Infarction if CHD data are not available), iii) stroke, and iv) lung 
cancer. In the simulation, each person is categorized into one of the three 
smoking groups: Smokers, ex-smokers, and people who have never smoked. 
Their initial distribution is based on the distribution of smokers, ex-smokers 
and never smokers from published data.

During the simulation, a person may change smoking states, and their relative 
risk will change accordingly. Relative risks associated with smokers and people 
who have never smoked have been collected from published data. The 
relative risks associated with ex-smokers (RRex-smoker) are related to the relative 
risk of smokers (RRsmoker). The ex-smoker relative risks are assumed to decrease 
over time with the number of years since smoking cessation (Tcessation). These 
relative risks are computed in the model using equations 1.19 and 1.20 (1).

where γ is the regression coefficient of time dependency. The constants γ0 
and η are intercept and regression coefficient of age dependency, respectively, 
which are related to the specified disease Table 2.
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Myocardial	Infarction	if	CHD	data	are	not	available),	iii)	stroke,	and	iv)	lung	cancer.	In	the	simulation,	

each	person	is	categorized	into	one	of	the	three	smoking	groups:	Smokers,	ex-smokers,	and	people	

who	have	never	smoked.	Their	initial	distribution	is	based	on	the	distribution	of	smokers,	ex-

smokers	and	never	smokers	from	published	data.	

During	the	simulation,	a	person	may	change	smoking	states,	and	their	relative	risk	will	change	

accordingly.	Relative	risks	associated	with	smokers	and	people	who	have	never	smoked	have	been	

collected	from	published	data.	The	relative	risks	associated	with	ex-smokers	(RRex-smoker)	are	related	

to	the	relative	risk	of	smokers	(RRsmoker).	The	ex-smoker	relative	risks	are	assumed	to	decrease	over	

time	with	the	number	of	years	since	smoking	cessation	(Tcessation).	These	relative	risks	are	computed	

in	the	model	using	equations	1.19	and	1.20	(1).	

	 ex-smoker cessation smoker cessation( , , ) 1 ( ( , ) 1)exp( ( ) )RR A S T RR A S A Tg= + - - 		 (1.15)	

	 0( ) exp( )A Ag g h= - 		 (1.16)	

where	γ	is	the	regression	coefficient	of	time	dependency.	The	constants	γ0	and	η	are	intercept	and	

regression	coefficient	of	age	dependency,	respectively,	which	are	related	to	the	specified	disease	

Table	2.		

Table	2		Parameter	Estimates	for	γ0	and	η	Related	to	Each	Disease	(1)	

Disease	 γ0	 η	

AMI	 0.24228	 0.05822	

Stroke	 0.31947	 0.01648	

COPD	 0.20333	 0.03087	

Lung	cancer	 0.15637	 0.02065	

	

However,	a	minimum	exists	when	the	cessation	time	is	equal	to	η-1.	The	minimum	value	was	

calculated	by	the	method	detailed	below	(equations	(1.17),	(1.18)	and	(1.19)).	Where	time	t	is	equal	

to	the	age	A	of	an	individual.		

	 ( ) ( ) ( )1 1Exsmk smkt f tr r= + - 		 (1.17)	
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( ) ( ) ( )( )

0 0

0 0
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Þ

¢ = - - - +

		 (1.18)	

The	function	f(t)	has	the	following	properties:	

Distribution name γ0 η

AMI 0.24228 0.05822

Stroke 0.31947 0.01648

COPD 0.20333 0.03087

Lung cancer 0.15637 0.02065

Table 2:  Parameter Estimates for γ0 and η Related to Each Disease (1)



42

However, a minimum exists when the cessation time is equal to η-1. The 
minimum value was calculated by the method detailed below (equations 
(1.17), (1.18) and (1.19)). Where time t is equal to the age A of an individual.

The function f(t) has the following properties:

In order to keep the RRex-smoker from increasing, the cessation time was set equal 
to η-1 when the cessation time was greater than η-1 (see equation (1.20)).
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The	function	f(t)	has	the	following	properties:	
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In	order	to	keep	the	RRex-smoker	from	increasing,	the	cessation	time	was	set	equal	to	η-1	when	the	

cessation	time	was	greater	than	η-1	(see	equation	(1.20)).	

	
1

smoker cessation cessation
ex-smoker cessation 1 1

smoker cessation

1 ( ( , ) 1)exp( ( ) )           
( , , )

1 ( ( , ) 1)exp( ( ) )                  
RR A S A T T

RR A S T
RR A S A T

g h
g h h

-

- -

ì + - - <
= í

+ - - ³î
	

	 (1.20)	

	 0( ) exp( )A Ag g h= - 		 (1.21)	

	

	

1.2.4 Relative	risks	
The	reported	incidence	risks	for	any	disease	do	not	make	reference	to	any	underlying	risk	factor.	The	

microsimulation	requires	this	dependence	to	be	made	manifest.		

The	risk	factor	dependence	of	disease	incidence	has	to	be	inferred	from	the	distribution	of	the	risk	

factor	in	the	population	(here	denoted	as	p);	it	is	a	disaggregation	process:	

Suppose	that	a	is	a	risk	factor	state	of	some	risk	factor	A,	and	denote	by	pA(d|a,a,s)	the	incidence		

probability	for	the	disease	d	given	the	risk	state,	a,	the	person’s	age,	a,	and	gender,	s.	The	relative	

risk	rA	is	defined	by	equation	(1.22).	
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cessation	time	was	greater	than	η-1	(see	equation	(1.20)).	
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1.2.4  Relative risks
The reported incidence risks for any disease do not make reference to any 
underlying risk factor. The microsimulation requires this dependence to be 
made manifest. 

The risk factor dependence of disease incidence has to be inferred from the 
distribution of the risk factor in the population (here denoted as π); it is a 
disaggregation process:

Suppose that     is a risk factor state of some risk factor A, and denote by 
                     the incidence  probability for the disease d given the risk state,  
the person’s age, a, and gender, s. The relative risk      is defined by equation 
(1.22).

Where       is the zero risk state (for example, the moderate state for alcohol 
consumption).

The incidence probabilities, as reported, can be expressed in terms of the equation,

Combining these equations allows the conditional incidence probabilities to 
be written in terms of known quantities

Previous to any series of Monte Carlo trials, the microsimulation program 
pre-processes the set of diseases and stores the calibrated incidence statistics

1.2.5  Modeling diseases
Disease modeling relies heavily on the sets of incidence, mortality, survival, 
relative risk, and prevalence statistics. 

The microsimulation uses risk-dependent incidence statistics, and these are 
inferred from the relative risk statistics and the distribution of the risk factor 
within the population. In the simulation, individuals are assigned a risk-factor 
trajectory giving their personal risk-factor history for each year of their lives. 
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In	order	to	keep	the	RRex-smoker	from	increasing,	the	cessation	time	was	set	equal	to	η-1	when	the	

cessation	time	was	greater	than	η-1	(see	equation	(1.20)).	
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In	order	to	keep	the	RRex-smoker	from	increasing,	the	cessation	time	was	set	equal	to	η-1	when	the	

cessation	time	was	greater	than	η-1	(see	equation	(1.20)).	
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In	order	to	keep	the	RRex-smoker	from	increasing,	the	cessation	time	was	set	equal	to	η-1	when	the	

cessation	time	was	greater	than	η-1	(see	equation	(1.20)).	
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risk	rA	is	defined	by	equation	(1.22).	
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In	order	to	keep	the	RRex-smoker	from	increasing,	the	cessation	time	was	set	equal	to	η-1	when	the	
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1.2.4 Relative	risks	
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probability	for	the	disease	d	given	the	risk	state,	a,	the	person’s	age,	a,	and	gender,	s.	The	relative	

risk	rA	is	defined	by	equation	(1.22).	
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Where	a0	is	the	zero	risk	state	(for	example,	the	moderate	state	for	alcohol	consumption).	

The	incidence	probabilities,	as	reported,	can	be	expressed	in	terms	of	the	equation,	
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Combining	these	equations	allows	the	conditional	incidence	probabilities	to	be	written	in	terms	of	

known	quantities	
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Previous	to	any	series	of	Monte	Carlo	trials,	the	microsimulation	program	pre-processes	the	set	of	

diseases	and	stores	the	calibrated	incidence	statistics	pA(d|a0,	a,	s).	

1.2.5 Modeling	diseases	
Disease	modeling	relies	heavily	on	the	sets	of	incidence,	mortality,	survival,	relative	risk,	and	

prevalence	statistics.		

The	microsimulation	uses	risk-dependent	incidence	statistics,	and	these	are	inferred	from	the	

relative	risk	statistics	and	the	distribution	of	the	risk	factor	within	the	population.	In	the	simulation,	

individuals	are	assigned	a	risk-factor	trajectory	giving	their	personal	risk-factor	history	for	each	year	

of	their	lives.	Their	probability	of	getting	a	particular	risk	factor-related	disease	in	a	particular	year	

will	depend	on	their	risk-factor	state	in	that	year.	

Once	a	person	has	a	fatal	disease	(or	diseases),	their	probability	of	survival	will	be	controlled	by	a	

combination	of	the	disease-survival	statistics	and	the	probabilities	of	dying	from	other	causes.	

Disease	survival	statistics	are	modeled	as	age-	and	gender-dependent	exponential	distributions.		

1.2.6 Methods	for	approximating	missing	disease	statistics	
A	large	amount	data	are	required	for	modeling	these	diseases.	Where	possible,	these	datasets	have	

been	collected	from	published	sources	or	analyzed	from	either	cross-sectional	or	longitudinal	

datasets.	Another	limitation	is	that	often	these	data	need	to	be	in	a	specific	format.	For	example,	the	

model	updates	the	individual’s	disease	status	every	year,	so	the	RR’s	used	in	the	model	need	to	be	

annual	RR’s.			

This	section	contains	the	methods	used	in	this	project	in	cases	where	data	for	a	particular	disease	

were	unavailable.	

10	

	

	
( ) ( ) ( )
( )

| 0

| 0

, , , , ,

, 1
d

d

p d a s a s p d a s

a s

a r a a

r a
A A A

A

=

º
		 (1.22)	

Where	a0	is	the	zero	risk	state	(for	example,	the	moderate	state	for	alcohol	consumption).	

The	incidence	probabilities,	as	reported,	can	be	expressed	in	terms	of	the	equation,	
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Combining	these	equations	allows	the	conditional	incidence	probabilities	to	be	written	in	terms	of	

known	quantities	
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of	their	lives.	Their	probability	of	getting	a	particular	risk	factor-related	disease	in	a	particular	year	

will	depend	on	their	risk-factor	state	in	that	year.	

Once	a	person	has	a	fatal	disease	(or	diseases),	their	probability	of	survival	will	be	controlled	by	a	

combination	of	the	disease-survival	statistics	and	the	probabilities	of	dying	from	other	causes.	

Disease	survival	statistics	are	modeled	as	age-	and	gender-dependent	exponential	distributions.		

1.2.6 Methods	for	approximating	missing	disease	statistics	
A	large	amount	data	are	required	for	modeling	these	diseases.	Where	possible,	these	datasets	have	

been	collected	from	published	sources	or	analyzed	from	either	cross-sectional	or	longitudinal	

datasets.	Another	limitation	is	that	often	these	data	need	to	be	in	a	specific	format.	For	example,	the	

model	updates	the	individual’s	disease	status	every	year,	so	the	RR’s	used	in	the	model	need	to	be	

annual	RR’s.			

This	section	contains	the	methods	used	in	this	project	in	cases	where	data	for	a	particular	disease	

were	unavailable.	
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Where	a0	is	the	zero	risk	state	(for	example,	the	moderate	state	for	alcohol	consumption).	
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Combining	these	equations	allows	the	conditional	incidence	probabilities	to	be	written	in	terms	of	

known	quantities	
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been	collected	from	published	sources	or	analyzed	from	either	cross-sectional	or	longitudinal	

datasets.	Another	limitation	is	that	often	these	data	need	to	be	in	a	specific	format.	For	example,	the	

model	updates	the	individual’s	disease	status	every	year,	so	the	RR’s	used	in	the	model	need	to	be	
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This	section	contains	the	methods	used	in	this	project	in	cases	where	data	for	a	particular	disease	
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Where	a0	is	the	zero	risk	state	(for	example,	the	moderate	state	for	alcohol	consumption).	
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Combining	these	equations	allows	the	conditional	incidence	probabilities	to	be	written	in	terms	of	

known	quantities	
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Previous	to	any	series	of	Monte	Carlo	trials,	the	microsimulation	program	pre-processes	the	set	of	
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datasets.	Another	limitation	is	that	often	these	data	need	to	be	in	a	specific	format.	For	example,	the	

model	updates	the	individual’s	disease	status	every	year,	so	the	RR’s	used	in	the	model	need	to	be	
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This	section	contains	the	methods	used	in	this	project	in	cases	where	data	for	a	particular	disease	
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10	

	

	
( ) ( ) ( )
( )

| 0

| 0

, , , , ,

, 1
d

d

p d a s a s p d a s

a s

a r a a

r a
A A A

A

=

º
		 (1.22)	

Where	a0	is	the	zero	risk	state	(for	example,	the	moderate	state	for	alcohol	consumption).	

The	incidence	probabilities,	as	reported,	can	be	expressed	in	terms	of	the	equation,	
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Combining	these	equations	allows	the	conditional	incidence	probabilities	to	be	written	in	terms	of	

known	quantities	
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Previous	to	any	series	of	Monte	Carlo	trials,	the	microsimulation	program	pre-processes	the	set	of	

diseases	and	stores	the	calibrated	incidence	statistics	pA(d|a0,	a,	s).	

1.2.5 Modeling	diseases	
Disease	modeling	relies	heavily	on	the	sets	of	incidence,	mortality,	survival,	relative	risk,	and	

prevalence	statistics.		

The	microsimulation	uses	risk-dependent	incidence	statistics,	and	these	are	inferred	from	the	

relative	risk	statistics	and	the	distribution	of	the	risk	factor	within	the	population.	In	the	simulation,	

individuals	are	assigned	a	risk-factor	trajectory	giving	their	personal	risk-factor	history	for	each	year	

of	their	lives.	Their	probability	of	getting	a	particular	risk	factor-related	disease	in	a	particular	year	

will	depend	on	their	risk-factor	state	in	that	year.	

Once	a	person	has	a	fatal	disease	(or	diseases),	their	probability	of	survival	will	be	controlled	by	a	

combination	of	the	disease-survival	statistics	and	the	probabilities	of	dying	from	other	causes.	

Disease	survival	statistics	are	modeled	as	age-	and	gender-dependent	exponential	distributions.		

1.2.6 Methods	for	approximating	missing	disease	statistics	
A	large	amount	data	are	required	for	modeling	these	diseases.	Where	possible,	these	datasets	have	

been	collected	from	published	sources	or	analyzed	from	either	cross-sectional	or	longitudinal	

datasets.	Another	limitation	is	that	often	these	data	need	to	be	in	a	specific	format.	For	example,	the	

model	updates	the	individual’s	disease	status	every	year,	so	the	RR’s	used	in	the	model	need	to	be	

annual	RR’s.			

This	section	contains	the	methods	used	in	this	project	in	cases	where	data	for	a	particular	disease	

were	unavailable.	
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Their probability of getting a particular risk factor-related disease in a particular 
year will depend on their risk-factor state in that year.

Once a person has a fatal disease (or diseases), their probability of survival 
will be controlled by a combination of the disease-survival statistics and the 
probabilities of dying from other causes. Disease survival statistics are modeled 
as age- and gender-dependent exponential distributions. 

1.2.6  Methods for approximating missing disease statistics
A large amount data are required for modeling these diseases. Where possible, 
these datasets have been collected from published sources or analyzed from 
either cross-sectional or longitudinal datasets. Another limitation is that often 
these data need to be in a specific format. For example, the model updates the 
individual’s disease status every year, so the RR’s used in the model need to be 
annual RR’s.  

This section contains the methods used in this project in cases where data for a 
particular disease were unavailable.

1.2.6.1  Terminal and non-terminal single-state disease incidence from 
prevalence
For terminal diseases, to estimate incidence knowing prevalence and mortality, 
one can proceed by finding those incidence probabilities that minimize the 
distance between the known          and computed prevalence    
    

Non-terminal diseases are treated in a similar way – although, obviously, the 
mortality probabilities are zero. 

1.2.6.2  Mortality statistics
In any year, in some population, in a sample of      people who have the disease, 
a subset         will die from the disease.

Mortality statistics record the cross-sectional probabilities of death as a result of 
the disease – possibly stratifying by age 
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1.2.6.2 Mortality	statistics	
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Within	some	such	subset	Nw of	people	that	die	in	that	year	from	the	disease,	the	distribution	by	

year-of-disease	is	not	usually	recorded.	This	distribution	would	be	most	useful.	Consider	two	

important	idealized,	special	cases	

Suppose	the	true	probabilities	of	dying	in	the	years	after	some	age	 0a 	are	{ }0 1 2 3 4, , , ,p p p p pw w w w w 		

The	probability	of	being	alive	after	N	years	is	simply	that	you	don’t	die	in	each	year		

	 ( ) ( )( )( ) ( )0 0 1 2 11 1 1 .. 1survive Np a N p p p pw w w w -+ = - - - - 		 (1.26)	

1.2.6.3 The	survival	models	
There	are	three	in	use	(they	are	easily	extended	if	the	data	merit):	

Survival	model	0:	a	single	probability	of	dying	{ }0pw 	

0pw 	is	valid	for	all	years	

Survival	model	1:	two	different	probabilities	of	dying	{ }0 1,p pw w 	

0pw 	is	valid	for	the	first	year;	 1pw thereafter.	

Survival	model	2:	three	different	probabilities	of	dying	{ }0 1 5, ,p p pw w w 	
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Within some such subset         of people that die in that year from the disease, 
the distribution by year-of-disease is not usually recorded. This distribution 
would be most useful. Consider two important idealized, special cases

Suppose the true probabilities of dying in the years after some age       are   

The probability of being alive after N years is simply that you don’t die in each year

1.2.6.3  The survival models
There are three in use (they are easily extended if the data merit):

Survival model 0: a single probability of dying  

         is valid for all years

Survival model 1: two different probabilities of dying  

         is valid for the first year;         thereafter.

Survival model 2: three different probabilities of dying  

         is valid for the first year;          for the second to the fifth year;          thereafter

Remember that different probabilities will apply to different age and gender 
groups. Typically the data might be divided into 10-year age groups.

1.2.6.4  Calculating survival from incidence and mortality
When a person (of a given gender) dies from a disease, they must have contracted 
it at some earlier age. For Survival model 2, this is expressed  11	
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When	the	longitudinal	probability	of	the	disease	incidence	at	age	a	satisfies	the	recursion	relation	
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1.2.6.4.1 Survival	Statistics	CRUK	2010/11	
The	following	table	(Table	3)	is	taken	from	the	CRUK	website	(www.cancerresearchuk.org/health-

professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival)	as	an	example.	It	gives	
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The three probabilities                                   are estimated by minimizing

When the longitudinal probability of the disease incidence at age a satisfies the 
recursion relation

1.2.6.4.1  Survival Statistics CRUK 2010/11
The following table (Table 3) is taken from the CRUK website (www.
cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-
type/lung-cancer/survival) as an example. It gives 1-, 5- and 10-year survival 
percentages for lung cancer:

The probabilities of being alive after 1, 5 and 10 years are

1.2.6.5  Survival rates
It is common practice to describe survival in terms of a survival rate R, supposing 
an exponential death-distribution. In this formulation, the probability of surviving t0 
years from some time t0 is given as

For a time period of 1 year  
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1.2.6.5 Survival	rates	
It	is	common	practice	to	describe	survival	in	terms	of	a	survival	rate	R,	supposing	an	exponential	

death-distribution.	In	this	formulation,	the	probability	of	surviving	t	years	from	some	time	t0	is	given	

as	
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For	a	time	period	of,	for	example,	4	years,	
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In	short,	the	Rate	is	minus	the	natural	log	of	the	1-year	survival	probability.	

1.2.6.6 Survival	models	0,	1,	and	2	
For	any	potentially	terminal	disease,	the	model	can	use	any	of	three	survival	models,	numbered	{0,	

1,	2}.	The	parameters	describing	these	models	are	given	below.		

1.2.6.6.1 Survival	model	0	
Given	the	1-year	survival	probability	 ( )1survivalp 	

The	model	uses	1	parameter	{R}	
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When	the	longitudinal	probability	of	the	disease	incidence	at	age	a	satisfies	the	recursion	relation	
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1.2.6.4.1 Survival	Statistics	CRUK	2010/11	
The	following	table	(Table	3)	is	taken	from	the	CRUK	website	(www.cancerresearchuk.org/health-

professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival)	as	an	example.	It	gives	

1-,	5-	and	10-year	survival	percentages	for	lung	cancer:	

Table	3	Survival	Percentage	for	Lung	Cancer	

	 	 Survival	

percentage	
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Lung	 32	 10	 5	 	 	 0.32	 0.75	 0.71	

	

The	probabilities	of	being	alive	after	1,	5	and	10	years	are		
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For a time period of, for example, 4 years,

In short, the Rate is minus the natural log of the 1-year survival probability.

1.2.6.6 Survival models 0, 1, and 2
For any potentially terminal disease, the model can use any of three survival 
models, numbered {0, 1, 2}. The parameters describing these models are given 
below. 

1.2.6.6.1  Survival model 0
Given the 1-year survival probability  

The model uses 1 parameter {R}

1.2.6.6.2  Survival model 1
The model uses two parameters {p1, R}

Given the 1-year survival probability                       and the 5-year survival probability

1.2.6.6.3  Survival model 2
The model uses three parameters {p1, R, R>5}

Given the 1-year survival probability                     and the 5-year survival probability

13	

	

	

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

4
0 0 1

4 5
0 0 1 5

1 1

5 1 1

10 1 1 1

survival

survival

survival

p a p

p a p p

p a p p p

w

w w

w w w

+ = -

+ = - -

+ = - - -

		 (1.30)	

1.2.6.5 Survival	rates	
It	is	common	practice	to	describe	survival	in	terms	of	a	survival	rate	R,	supposing	an	exponential	

death-distribution.	In	this	formulation,	the	probability	of	surviving	t	years	from	some	time	t0	is	given	
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In	short,	the	Rate	is	minus	the	natural	log	of	the	1-year	survival	probability.	
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1.2.6.6.3 Survival	model	2	
The	model	uses	three	parameters	{p1,	R,	R>5}	

Given	the	1-year	survival	probability	 ( )1survivalp and	the	5-year	survival	probability	 ( )5survivalp 	
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1.2.6.7 Approximating	single-state	disease	survival	data	from	mortality	and	prevalence	
An	example	is	provided	here	with	a	standard	life-table	analysis	for	a	disease	d.					

Consider	the	4	following	states:	

state	 Description	

0	 alive	without	disease	d	

1	 alive	with	disease	d	

2	 dead	from	disease	d	

3	 dead	from	another	disease	

pik		 is	the	probability	of	disease	d	incidence,	aged	k	

pwk		 is	the	probability	of	dying	from	the	disease	d,	aged	k	

#>$ 	 is	the	probability	of	dying	other	than	from	disease	d,	aged	k	

The	state	transition	matrix	is	constructed	as	follows	
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		 (1.37)	

It	is	worth	noting	that	the	separate	columns	correctly	sum	to	unity.	
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It	is	worth	noting	that	the	separate	columns	correctly	sum	to	unity.	
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1.2.6.7  Approximating single-state disease survival data from mortality 
and prevalence
An example is provided here with a standard life-table analysis for a disease d.    

Consider the 4 following states:

 is the probability of disease d incidence, aged k

 is the probability of dying from the disease d, aged k

 is the probability of dying other than from disease d, aged k

The state transition matrix is constructed as follows

It is worth noting that the separate columns correctly sum to unity.

The disease mortality equation is that for state-2,

The probability of dying from the disease in the age interval [k, k+1] is
this is otherwise the (cross-sectional) disease mortality, pmor(k). p1(k) is otherwise 
known as the disease prevalence, ppre(k). Hence the relation

state Description

0 alive without disease d

1 alive with disease d

2 dead from disease d

3 dead from another disease
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It	is	worth	noting	that	the	separate	columns	correctly	sum	to	unity.	
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1.2.6.6.3 Survival	model	2	
The	model	uses	three	parameters	{p1,	R,	R>5}	
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The	disease	mortality	equation	is	that	for	state-2,	

	 ( ) ( ) ( )2 1 21 kp k p p k p kw+ = + 		 (1.38)	

	

The	probability	of	dying	from	the	disease	in	the	age	interval	[k,	k+1]	is	 ( )kpp k 1w 	-	this	is	otherwise	

the	(cross-sectional)	disease	mortality,	pmor(k).	p1(k)	is	otherwise	known	as	the	disease	prevalence,	

ppre(k).	Hence	the	relation	
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For	exponential	survival	probabilities,	the	probability	of	dying	from	the	disease	in	the	age-interval	

[k,	k+1]	is	denoted	pWk	and	is	given	by	the	formula	

	 ( )1 ln 1kR
k k kp e R pw w

-= - Þ = - - 		 (1.40)	

When,	as	is	the	case	for	most	cancers,	these	survival	probabilities	are	known,	the	microsimulation	

will	use	them.	When	they	are	not	known	or	are	too	old	to	be	any	longer	of	any	use,	the	

microsimulation	uses	survival	statistics	inferred	from	the	prevalence	and	mortality	statistics	

(equation	(1.39)).		

An	alternative	derivation	equation	(1.39)	is	as	follows.	Let	Nk	be	the	number	of	people	in	the	

population	aged	k,	and	let	nk	be	the	number	of	people	in	the	population	aged	k	with	the	disease.	

Then,	the	number	of	deaths	from	the	disease	of	people	aged	k	can	be	given	in	two	ways:	as	pwknk	

and,	equivalently,	as	pmor(k)Nk.	Observing	that	the	disease	prevalence	is	nk/Nk	leads	to	the	equation	
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1.2.6.8 Approximating	 multi-state	 disease	 survival	 data	 from	 incidence	 and	 mortality,	
assuming	no	remission	

Disease	Mortality	statistics	give	the	probability	that	a	person	will	die	from	the	disease	in	a	given	year	

of	life.	They	make	no	reference	to	when	the	disease	from	which	the	person	dies	was	contracted.		

Disease	Survival	statistics	give	the	probability	that	a	person	will	die	from	the	disease	in	a	given	year	

of	life,	given	that	they	contracted	the	disease	in	some	earlier	year.	

The	connection	between	the	two	is	provided	by	the	equation	of	the	form	
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For exponential survival probabilities, the probability of dying from the disease in 
the age-interval [k, k+1] is denoted         and is given by the formula

When, as is the case for most cancers, these survival probabilities are known, the 
microsimulation will use them. When they are not known or are too old to be any 
longer of any use, the microsimulation uses survival statistics inferred from the 
prevalence and mortality statistics (equation (1.39)). 

An alternative derivation equation (1.39) is as follows. Let Nk be the number of 
people in the population aged k, and let nk be the number of people in the 
population aged k with the disease. Then, the number of deaths from the disease of 
people aged k can be given in two ways: as              and, equivalently, as
 Observing that the disease prevalence is              leads to the equation

1.2.6.8  Approximating multi-state disease survival data from incidence and 
mortality, assuming no remission
Disease Mortality statistics give the probability that a person will die from the 
disease in a given year of life. They make no reference to when the disease from 
which the person dies was contracted. 

Disease Survival statistics give the probability that a person will die from the disease 
in a given year of life, given that they contracted the disease in some earlier year.

The connection between the two is provided by the equation of the form

This equation can be used to infer survival statistics when only the incidence and 
mortality statistics are known – essentially by choosing the survival statistics so as to 
get the mortality statistics calculated from equation (1.42) as close as possible to the 
known set.

Multi-state diseases have mortality, survival, and incidence statistics that are state 
dependent. Aside from this additional level of complexity, the determination of 
disease survival proceeds in the same way. 
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1.2.6.8 Approximating	 multi-state	 disease	 survival	 data	 from	 incidence	 and	 mortality,	
assuming	no	remission	

Disease	Mortality	statistics	give	the	probability	that	a	person	will	die	from	the	disease	in	a	given	year	

of	life.	They	make	no	reference	to	when	the	disease	from	which	the	person	dies	was	contracted.		

Disease	Survival	statistics	give	the	probability	that	a	person	will	die	from	the	disease	in	a	given	year	

of	life,	given	that	they	contracted	the	disease	in	some	earlier	year.	

The	connection	between	the	two	is	provided	by	the	equation	of	the	form	
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This	equation	can	be	used	to	infer	survival	statistics	when	only	the	incidence	and	mortality	statistics	

are	known	–	essentially	by	choosing	the	survival	statistics	so	as	to	get	the	mortality	statistics	

calculated	from	equation	(1.42)	as	close	as	possible	to	the	known	set.	

Multi-state	diseases	have	mortality,	survival,	and	incidence	statistics	that	are	state	dependent.	Aside	

from	this	additional	level	of	complexity,	the	determination	of	disease	survival	proceeds	in	the	same	

way.		

1.2.6.8.1 Setup	
For	each	sex,	consider	an	N-stage,	terminal	disease	for	which	both	the	inter-stage	transition	

probabilities, ( ),i jp a 	(the	probability	to	go	from	stage	i	to	stage	j),	and	the	state-dependent	

mortality	probabilities	 ( )K
morp a 	(K	denotes	the	stage	number	and	a	the	age)	are	known.	The	

following	algorithm	allows	for	an	optimal	determination	of	the	stage-dependent	survival	

probabilities.	In	the	special	case	of	a	single-state	disease,	it	reduces	to	the	previously	developed	

single-stage	determination	of	survival.		

1.2.6.8.2 Definitions	
( )0 0| ,Kp a a K 		 the	probability	of	not	having	died	from	the	disease	and	being	in	stage	K	at	age	

a ,	given	that	the	disease	was	contracted	at	 0a 	in	state	K0	

( )0 0| ,p a a Kw 		 the	probability	of	being	dead	(from	the	disease)	at	age	a ,	given	that	the	

disease	was	contracted	at	 0a 	in	state	K0		

( )0 0,incp a K 			 the	probability	of	first	getting	the	disease	in	 0a 	in	state	K0	,	given	no	disease	at	

age	0	

( )0|Kp a aw 		 the	probability	of	dying	from	the	disease	in	stage	K	at	age	a ,	given	that	the	

disease	was	contracted	at	age	a0	and	that	the	person	was	alive	at	age	a-1	

These	probabilities	are	linked	by	the	state-update	equation,	

1.2.6.8.3 Disease	incidence	
The	probability	that	a	person,	who	at	age	0	does	not	have	the	disease,	first	gets	the	disease	at	age	

0a 	in	state	K0	given	as	
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1.2.6.8.4 Disease	survival	
Once	a	person	has	the	disease,	they	can	possibly	change	disease	stage,	or	they	can	die	from	the	

disease.	(This	analysis	focuses	only	on	the	identified	disease	and	does	not	allow	for	the	possibility	

that	they	die	from	other	causes.)	Suppose	they	acquire	the	disease	at	age	 0a 	in	stage	K,	then	the	
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1.2.6.8.1  Setup
For each sex, consider an N-stage, terminal disease for which both the inter-stage 
transition probabilities,                 (the probability to go from stage i to stage j), 
and the state-dependent mortality probabilities                  (K denotes the stage 
number and a the age) are known. The following algorithm allows for an optimal 
determination of the stage-dependent survival probabilities. In the special case 
of a single-state disease, it reduces to the previously developed single-stage 
determination of survival. 

1.2.6.8.2  Definitions
  
  the probability of not having died from the disease and being in 
  stage K at age     , given that the disease was contracted at      in
  state
  
  the probability of being dead (from the disease) at age    , given 
  that the disease was contracted at     in state

  the probability of first getting the disease in      in state      , given 
  no disease at age 0
  
  the probability of dying from the disease in stage K at age    , 
  given that the disease was contracted at age      and that the 
  person was alive at age a-1

These probabilities are linked by the state-update equation,

1.2.6.8.3  Disease incidence
The probability that a person, who at age 0 does not have the disease, first gets the 
disease at age       in state       given as

1.2.6.8.4  Disease survival
Once a person has the disease, they can possibly change disease stage, or they can 
die from the disease. (This analysis focuses only on the identified disease and does 
not allow for the possibility that they die from other causes.) Suppose they acquire 
the disease at age      in stage K, then the initial state vector is determined from the 
initial conditions                                                                           .  At subsequent ages, the 
state probabilities are given by the recursion equation
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This	equation	can	be	used	to	infer	survival	statistics	when	only	the	incidence	and	mortality	statistics	
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This	equation	can	be	used	to	infer	survival	statistics	when	only	the	incidence	and	mortality	statistics	
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calculated	from	equation	(1.42)	as	close	as	possible	to	the	known	set.	
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This	equation	can	be	used	to	infer	survival	statistics	when	only	the	incidence	and	mortality	statistics	
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calculated	from	equation	(1.42)	as	close	as	possible	to	the	known	set.	
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morp a 	(K	denotes	the	stage	number	and	a	the	age)	are	known.	The	
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single-stage	determination	of	survival.		
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This	equation	can	be	used	to	infer	survival	statistics	when	only	the	incidence	and	mortality	statistics	
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calculated	from	equation	(1.42)	as	close	as	possible	to	the	known	set.	
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This	equation	can	be	used	to	infer	survival	statistics	when	only	the	incidence	and	mortality	statistics	

are	known	–	essentially	by	choosing	the	survival	statistics	so	as	to	get	the	mortality	statistics	

calculated	from	equation	(1.42)	as	close	as	possible	to	the	known	set.	
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initial	state	vector	is	determined	from	the	initial	conditions ( ) ( ) ( )
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1.2.6.8.5 Disease	mortality	
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Where, for survival model 2,

1.2.6.8.5  Disease mortality
The probability of dying from the disease in stage K at age    , denoted                  ,  is 
given by the equation

1.2.6.8.6  Estimating survival
When the disease mortality is known, here denoted                  , the sets of survival 
parameters (3 for each state, and possibly stratified by age) can be estimated by 
minimizing
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1.2.7  Approximating attributable cases
The smoking attribute cases (IA) for a disease (d) is calculated by dividing the 
number of new cases of a disease among individuals who are either smokers or ex-
smokers (n) by the total number of people in the population in a given year. 

1.2.8  Potential Years of Life Lost (PYLL) (2, 3)
The PYLL for an individual (PYLL(i)) who dies in a given year will be calculated from 
the following equation (1.2).

For each individual, the difference between the reference age (life expectancy) and 
the age of death will be calculated. The total PYLL each year ( TotalPYLL(year)) will 
be calculated each year in the microsimulation. This metric will consider individuals 
who have died in a given year (Ndied(year)). 

As the simulation projects into the future, and simulates a cohort of children with 
defined age groups and therefore year of birth, life expectancy values for each 
simulated individual will be based on their life-expectancy values at birth, obtained 
for each country from national statistics repositories.

1.2.9  Premature mortality rate 
The premature mortality rate (PM(year)) based on the number of individuals who 
die prematurely in a given year is calculated based on equations  

1.2.10  Costs module
The cost module includes both direct and indirect cost calculations.
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1.2.10 Costs	module	
The	cost	module	includes	both	direct	and	indirect	cost	calculations.	

1.2.10.1 Direct	costs		
Direct	costs	are	calculated	based	on	a	cost	per	case,	which	is	constant	throughout	the	simulation.		
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Modeling the Long-Term Health and Cost Impacts of Reducing 
Smoking Prevalence through Tobacco Taxation in Ukraine

1.2.10.1  Direct costs 
Direct costs are calculated based on a cost per case, which is constant throughout 
the simulation. 

The direct costs are displayed per million $ and at a rate defined by the user.

95% confidence intervals are calculated from the prevalence rates per individual (P) 
by the equation below.

1.2.11  Premature mortality costs (PMC)(4, 5)

The premature mortality costs for each individual (PMC(i)) are calculated by 
summing over the income costs from the age of death until the maximum age. 
The maximum age can be defined as the pension age or by some other value. 

The model outputs average PMC per 100,000 as shown in the equation below (1.10).

1.2.12  Propagation of errors equation
To include totals for each of the outputs, the sum of each disease output (e.g. 
incidence, prevalence) was summed. The total errors (ET) were calculated using the 
propagation of errors equation: 

Where En is the error for each individual disease output which has been included in 
the sum.
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Cost per case ($) *  Prevalence(year)

Direct cost (£) per individual (year) = 
Alive (year)

		 (1.6)	

The	direct	costs	are	displayed	per	million	$	and	at	a	rate	defined	by	the	user.	

	
6

Direct cost ($) per individual (year) * rate
Direct costs (M£) per rate (year)=

10
		 (1.7)	

95%	confidence	intervals	are	calculated	from	the	prevalence	rates	per	individual	(P)	by	the	equation	

below.	
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1.2.11 Premature	mortality	costs	(PMC)(4,	5)		
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The	premature	mortality	costs	for	each	individual	(PMC(i))	are	calculated	by	summing	over	the	
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2  Software Architecture

2.1  Aim of the Model
This model utilizes a common bespoke method to predict the impact of 
changing risk factors to measure chronic disease. UKHF currently have risk-factor 
models for obesity, tobacco, albuminuria, and eGFR and related diseases that 
include myocardial infarction/coronary heart disease, stroke, Type 2 diabetes, 
chronic obstructive pulmonary disease, chronic kidney disease, and lung cancer. 

The model is an epidemiological/medical competing-risk application that uses 
both stochastic and deterministic processing capable of projecting cohort 
mortality rates of an individual or a population, taking account of the individuals’ 
risk factors and medical profiles. Through its interactive scenario specification, 
the model allows for the effects of ageing and the projection of future mortality 
rates, either with or without taking into account possible future trends in risk 
factors or medical conditions.

2.2  Summary of the Architecture of the Existing Model
The existing solution is written in C++ (compiler Embarcadero C++ Builder). It is 
a modular, object-oriented design and is compiled to run under the Windows 
operating system.

The application has a limited interactive graphics capability designed for 
the rapid assessment of outputs and comparative assessments of batched 
runs. Diagrams and graphs produced in this way can be exported from the 
application in suitable file formats. The model is equipped with a suite of editors 
allowing flexible and traceable input of individual, cohort, or population data. 

The model’s inputs are in the form of tab-delimited text files. The application 
has a number of editors that can create, edit, and store these files. The 
simulation, disease, and scenario editors allow the user to specify all input data 
files, parameters and processing rules necessary for a run of the program. The 
application’s many data inputs are processed in a similar fashion – for a specified 
run-configuration, the application dynamically creates and maintains lists of 
software objects, each object being constructed from a designated data file (the 
disease and scenario objects sketched below are examples of this process). Files 
input in this way into their corresponding dynamical objects are automatically 
checked for their data integrity by the newly created software object’s own 
methods. Each run creates and stores a time-tagged configuration file specifying 
the complete set of input files, output files, parameter settings and rule set. 
Provided that the necessary input data are available, it is possible to rerun a 
simulation by reusing the configuration file.
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Outputs are handled in a similar way but in reverse: Run-time generated 
outputs are stored in dynamically created output objects; at the end of a run, 
the objects write their data to tab-delimited text files. Outputs can be summary 
files, medium or low-level data files which can be further processed by standard 
software packages.

2.3  Main C++ Classes Used by the Model
Individual members of the population and diseases are modeled by the C++ 
classes Tperson and Tdisease respectively. The risk-factor trends and scenarios 
are modeled by the C++ class Tscenario. The principal operations of the 
program can be regarded as the interactions of Tperson, Tdisease, and Tscenario 
objects. These classes have some of their fields and methods highlighted in 
the following section and subsections; the idea is to give an indication of the 
processing chain implemented in the model. The software closely follows the 
real-world life of individuals – they age in a personal risk factor environment and 
possibly catch diseases from which they may recover or die. 

Figure 3 shows a schematic of the model illustrating the overall structure of the 
model and each class. 

Figure 2.2: The Model Structure.
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Output editors

Input Files

Output Files
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Figure 3:  Schematic of the Model.

2.3.1  Tperson C++ class
People are implemented as instances of the C++ class, Tperson; an indication 
of its data fields and methods provided in Table 4 are grouped into the state 
record. The medHistory record maintains their current disease and risk factor 
status together with data necessary for the computation of disease-related 
transitions. The Tperson object’s data fields are updated annually with the 
yearByYear(diseaseList, scenarioList, …) method. The method needs to be 
supplied with pointers to the list of disease object pointers being modeled 
and the list of risk-factor scenario object pointers, which determines how the 
person’s set of risk factors change over the year.     

Tperson Description

Data field

State State vector record

medHistory Medical history record

… …

Method

Tperson(state0,medHistory0) Constructor for initial state and history

yearByYear(…) Updates state and medHistory by one year

… …

Table 4:  The C++ Tperson Class
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Figure 3:  Schematic of the Model.

2.3.2  Tdisease C++ class
Both single and multistage diseases are implemented as instances of the C++ 
class Tdisease. An example of their structure is shown in Figure 4. Each stage of 
a disease has its own set of disease statistics such as incidence risks, remission 
risks, and survival risks. Moreover, each disease stage will also contain economic 
data such as direct and indirect costs. In addition to the data fields, there are also 
methods that are included in the Tdisease class, some examples of which are 
provided in Table 5. Disease data are stored in structured text files – one file for 
each disease or version of that disease. The key method of the Tdisease class is 
function GetRisk() . For a specified person state, medical history, and risk factor 
type, the method returns the relevant transition probability. If the application 
is running in a stochastic transition mode, this probability is compared to an 
application-generated random number to determine if the transition takes 
place; in deterministic mode, the same transition probability is included in the 
relevant life-disease table that computes and lists the probabilities of being alive 
and in possible exclusive disease states or dead.

Common

Disease DiseaseState
stage 1

DiseaseState
stage 2

CostQoL 11

Cost direct 11

Cost indirect 11

Risk inc 01

Risk inc 12

Risk rem 10

relrisk bmi

relrisk bmi

relrisk bmi

relrisk smk

relrisk smk

relrisk smk

CostQoL 22

Cost direct 22

Cost indirect 22

Risk inc 02

Risk rem 20

Risk rem 21

relrisk bmi

relrisk bmi

relrisk bmi

relrisk smk

relrisk smk

relrisk smk

Figure 4:  Mulitistage Disease Architecture

KEY
inc > incidence
rem > remission
pre > prevalence
mor > mortality
sur > survival
bmi > body mass index
smk > smoking
--
01 > stage0 to stage 1
02 > stage1 to stage 2
20 > stage1 to stage 2
11 > stage1
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TDisease Description

Data field name Disease name

terminal Boolean, true if the disease is terminal

state Disease state {normal, severe,…}

*DataAvailability Boolean array of Data availability by risk type

**IncidenceRisk Incidence rates by age, gender

***SurvivalRisk Survival rates by age, gender, state

**PrevalenceRisk Prevalence rates by age, gender

***RemissionRisk Remission rates by age and gender,state

***MortalityRisk Mortality rates by age, gender, state

***RelRisk
Relative risks by risk factor type, age, gen-

der

… …

Method

TDisease(aFile) Constructor using data from aFile

LoadFromFile(aFile) Fills the data fields from aFile

WriteToFile(aFile) Writes the data fields to aFile

GetRisk(state, medHistory,risk-
type)

Returns risk for specified risktype

… …

Table 5:  The C++ Tdisease Class

Processing is user-specified to be either random (Monte Carlo) or deterministic. 
The random option can process any specified population or cohort; the 
deterministic option processes only cohorts. In this context: A population is 
a specified number of males and females whose age distributions and risk 
factor distributions are input as appropriate tab delimited text files; a cohort 
is a text file of individuals specifying, for each individual, their initial state and 
medical history. The user options and necessary data files are specified in the 
application’s simulation editor.

The user must also specify the set of diseases and the set of risk factors that 
are being simulated. Again, this is done via the appropriate application editor: 
The disease editor allows the construction and identification of a batch file 
of disease files; the simulation editor allows for the specification of the mix 
of risk factors and, where necessary, their distributions by age and gender. 
The simulation editor also provides the mechanism by which essential run 
parameters are specified – the start year, stop year, number of trials, and so on.
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Individuals are processed one at a time from the simulation’s start year until they 
either die or reach the simulation’s stop year. In each simulated year they can 
either contract any mix of the modeled diseases which they do not yet have, 
achieve remission from any disease or disease stage they might have, die from 
any terminal disease they might have, or die from other causes. (Other causes 
are modeled as a single, instantly fatal, terminal disease; its incidence probability 
is constructed via the disease editor from the modeled diseases’ mortality 
statistics and the appropriate national mortality statistics).

Each run of the model requires the specification of a risk-factor scenario for each 
risk factor modeled. These scenarios can simply maintain risk-factor distributions 
at their start year values, or they can allow for the modeling of risk factor 
trends or medical advances resulting in the reduction of disease incidence or 
improvements in the survivability of specified diseases.

2.3.3  Tscenario C++ class
Scenarios are modeled as instances of the C++ Tscenario class and are 
constructed by the scenario editor, which is accessed via the simulation editor. 

Runs can be organized into batches, with different runs having different risk-
factor scenarios. This allows for direct comparisons to be made – for example, 
what happens to life expectancy with or without improvements to the 
treatment of stroke.

Scenarios are implemented as instances of the C++ class, Tscenario; an 
indication of its data fields and methods is provided in Table 6.  

The scenario objects are constructed from files that are created by the  
scenario editor. 

Much of the input data (disease data, mortality data, demographic data, etc.) is 
typically changed on an annual basis. Such changes are easily accommodated 
and logged via the input editors – the disease, distribution, and simulation 
editors.

New diseases that are described by the current set of risk factors can be added 
to (or subtracted from) the simulation via the disease editor.
The model has essentially only two external software dependencies: Its own 
C++ development environment and its host processor’s operating system. The 
configuration was chosen for ease of its maintainability.    
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Tscenario

Data field

scenarioType Type of scenario eg. {,smoking,… }

start year Year at which scenario starts

stop year Year at which scenario stops

futureRiskFile File specifying future risk distribution

targetAgeGroup Target age group eg. {18+}

targetGenderGroup Target gender group eg. {males,females}

… …

Method

Tscenario(aFile) Constructor using data from aFile

LoadFromFile(aFile) Fills data fields from aFile

… …

Table 6:  The C++ Tscenario Class
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Appendix 2. Results of the TaXSiM model: 
Ukraine Summary Cigarette Tax - Scenarios 
Output – 2015 – 2017

Government Revenue Type Actual 
2015

Expected 
Contribution 

to GDP

Baseline Situation 
(2016): Ad valorem 

(12%) minimum 
specific (8.515 

UAH) and simple 
specific (6.365 

UAH) 

Expected 
Contribution 

to GDP

SCENARIO 1 
(2017): Ad valorem 
remains equal and 
12% tax increase 
in minimum spe-
cific excise (9.54 

UAH), and simple 
specific (7.13 UAH)

Expected 
Contribution 

to GDP

SCENARIO 2 
(2017): Increase 
Ad valorem tax 
(15%), and 30% 
Increase in the 

minimum specific 
excise (11.08 UAH), 
and simple specific 

(8.28 UAH)

Expected 
Contribution 

to GDP

SCENARIO 3 
(2017): Increase 
30% the Ad va-
lorem, and 50% 
Increase in the 

minimum specific 
excise (12.77 UAH), 
and simple specific 

(9.55 UAH)

Expected 
Contribution 

to GDP

SCENARIO 4 
(2017): Increase 
Ad valorem and 

specific tax (40%), 
adopting a simpli-
fied tax structure 

with uniform 
specific excise tax 

(11.92 UAH)

Expected 
Contribution 

to GDP

Total cigarettes taxed (billion 
pieces) 73.8 66.9 64.0 60.1 53.4 48.8

Average cigarette price (UAH per 
pack) 15.2 19.2 21.2 24.7 32.9 41.4

Average cigarette price (US$ per 
pack) * $0.63 $0.81 $0.87 $1.01 $ 1.35 $1.69

Average excise tax (UAH per 1000 
pieces) 308.9 430.7 482.6 573.0 825.8 1106.1

Total excise tax revenue (billion 
UAH) 22.8 1.0% 28.8 1.3% 30.9 1.2% 34.4 1.3% 44.1 1.7% 54.0 2.1%

Total excise tax revenue (US$ 
billion) * $0.94 $1.21 $ 1.27 $1.41 $ 1.81 $ 2.21

Additional tobacco excise (billion 
UAH) /percentage of GDP 6.0 0.3% 2.1 0.1% 5.6 0.2% 15.3 0.6% 25.1 1.0%

Additional tobacco excise (U$ 
million) * $ 254 $85 $230 $ 626 $1,030

Total government revenue (excise, 
VAT and levies, billion UAH) 34.9 1.6% 42.1 1.8% 45.0 1.8% 49.9 1.9% 61.9 2.4% 73.9 2.9%

Total government revenue (excise, 
VAT and levies, US$ billion) * $1.4 $1.8 $1.8 $2.0 $ 2.5 $ 3.0

Total expenditure on cigarettes 
(billion UAH) 56.3 64.3 67.9 74.2 88.0 100.9

Percentage change in total ciga-
rette consumption (%) -9.3 -4.3 -10.2 -20.2 -27.1

* World Bank Group forecast: 
Annual average exchange rate = 2016 (1US$/23.8 UAH); 2017 (1US$/24.4 UAH) 
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(15%), and 30% 
Increase in the 

minimum specific 
excise (11.08 UAH), 
and simple specific 

(8.28 UAH)

Expected 
Contribution 

to GDP

SCENARIO 3 
(2017): Increase 
30% the Ad va-
lorem, and 50% 
Increase in the 

minimum specific 
excise (12.77 UAH), 
and simple specific 

(9.55 UAH)

Expected 
Contribution 

to GDP

SCENARIO 4 
(2017): Increase 
Ad valorem and 

specific tax (40%), 
adopting a simpli-
fied tax structure 

with uniform 
specific excise tax 

(11.92 UAH)

Expected 
Contribution 

to GDP

Total cigarettes taxed (billion 
pieces) 73.8 66.9 64.0 60.1 53.4 48.8

Average cigarette price (UAH per 
pack) 15.2 19.2 21.2 24.7 32.9 41.4

Average cigarette price (US$ per 
pack) * $0.63 $0.81 $0.87 $1.01 $ 1.35 $1.69

Average excise tax (UAH per 1000 
pieces) 308.9 430.7 482.6 573.0 825.8 1106.1

Total excise tax revenue (billion 
UAH) 22.8 1.0% 28.8 1.3% 30.9 1.2% 34.4 1.3% 44.1 1.7% 54.0 2.1%

Total excise tax revenue (US$ 
billion) * $0.94 $1.21 $ 1.27 $1.41 $ 1.81 $ 2.21

Additional tobacco excise (billion 
UAH) /percentage of GDP 6.0 0.3% 2.1 0.1% 5.6 0.2% 15.3 0.6% 25.1 1.0%

Additional tobacco excise (U$ 
million) * $ 254 $85 $230 $ 626 $1,030

Total government revenue (excise, 
VAT and levies, billion UAH) 34.9 1.6% 42.1 1.8% 45.0 1.8% 49.9 1.9% 61.9 2.4% 73.9 2.9%

Total government revenue (excise, 
VAT and levies, US$ billion) * $1.4 $1.8 $1.8 $2.0 $ 2.5 $ 3.0

Total expenditure on cigarettes 
(billion UAH) 56.3 64.3 67.9 74.2 88.0 100.9

Percentage change in total ciga-
rette consumption (%) -9.3 -4.3 -10.2 -20.2 -27.1
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Appendix 3. Adjustment of Epidemiological Input Data 
for the Microsimulation Model of the Health Impacts of 
Tobacco Taxation in Ukraine

The goal of this annex is to summarize research findings relevant to the 
microsimulation model, including data on the incidence of tobacco-use-
related diseases, relative risks of their development in smokers and former 
smokers compared with never smokers, and related risk of premature death.

Below, diseases included in the model are considered and, for each of them, 
extracts are shown from studies related to incidence, relative risks, and 
mortality. Based on the published evidence and statistics available for Ukraine, 
estimates of incidence and relative risks were elaborated and suggested as 
inputs for the microsimulation model.

As estimates from the Global Burden of Disease database became available 
during our research (Global Burden of Disease, 2016), we utilized incidence 
inputs from this database. Estimates for relative risks were used, as explained 
below. 

3.1  Cardiovascular Diseases, Particularly Coronary Heart Disease (CHD) 

3.1.1  Incidence
Because there are no proper estimates of CHD incidence in Ukraine, and most 
studies report only relative risks and no absolute risks, data were adapted from 
the seminal study on ischemic heart disease – the Framingham study (Castelli, 
1984; Lerner & Kannel, 1986). 

The Framingham study reports average morbidity and mortality for men and 
women. It was calculated that the number of CHD cases is about five times 
greater than the number of CHD deaths. SDR for CHD in Ukraine was taken 
for the years 2012-2014 and multiplied by the coefficient to estimate the 
approximate level of average incidence.

Framingham
Morbidity/
mortality

Ukraine

morbidity mortality ratio morbidity mortality

Males 28.7 6.2 4.6 2777 600

Females 14.5 2.8 5.2 1864 360

Table 3.1:  Calculation of Estimated CHD Morbidity for Ukraine (per 100 000)
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Subsequently, from the graphs included in papers on the Framingham study, 
the biennial levels of new cases of CHD per 1000 were extracted, smoothed to 
five-year intervals, and multiplied by 50 to switch to rates per year per 100000. 
Then, average unweighted incidence for people aged 35-84 was calculated, 
the coefficients were determined to adjust the incidence to the expected 
value based on mortality levels (1.6 for men and 1.9 for women), and the 
expected incidence was calculated. It was assumed that people older than 84 
years have the same incidence as people aged 80-84. In Table 3.2, columns 
which correspond to age groups 0-34 are not shown, as their incidence of 
CHD is assumed to be 0.

Age groups Coefficients

35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84

Framingham 
biennial per 
1000

male 9 9 21 21 40 40 48 48 52 52

female 1 1 7 7 20 20 26 26 46 46

Smoothed

male 9 13 17 27 34 43 45 49 51 52

female 1 3 5 11 16 22 24 33 39 46

Per year per 
1000000

male 450 650 850 1367 1683 2133 2267 2467 2533 2600 1700

female 50 150 250 567 783 1100 1200 1633 1967 2300 1000

Multiplied 
for Ukraine

male 735 1062 1389 2233 2750 3485 3703 4030 4139 4248 4248 1.6

female 93 280 466 1056 1460 2051 2237 3045 3666 4288 4288 1.9

Table 3.2:  Calculation of Estimated Incidence of CHD in Ukraine By Gender And Age, per 100 000 
                     Population per Year
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3.1.2  Relative risk 
Peer-reviewed literature shows that younger smokers have a much greater 
relative risk of contracting CHD than older ones. Relative to never smokers, 
CHD risk among current smokers was highest in the youngest and lowest 
in the oldest participants. For example, among women aged 40 to 49 years, 
the hazard ratio was 8.5 (95% confidence interval [CI] = 5.0, 14), while it was 
3.1 (95% CI = 2.0, 4.9) among those aged 70 or older. The largest absolute 
risk differences between current smokers and never smokers were observed 
among the oldest participants. Finally, the majority of CHD cases among 
smokers were attributable to smoking. For example, attributable proportions 
of CHD by age group were 88% (40-49 years), 81% (50-59 years), 71% for (60-69 
years), and 68% (70 years) among women who smoked (Tolstrup et al., 2014).

Graphs from this systematic review which display RR by age groups are 
shown below.

Figure 3.1: RRs of Developing CHD among Female Smokers Compared 
with Non-Smokers by Age Groups, Results from a Systematic Review 
(Tolstrup et al., 2014).
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Figure 3.2: RRs of Developing CHD among Male Smokers Compared  
with Non-Smokers by Age Groups, Results from a Systematic Review 
(Tolstrup et al., 2014).

A population-based prospective cohort study of 19 782 men and 21 500 
women aged 40-59 years between 1990-1992 and 2001 was conducted 
to examine the relationship between smoking status and the risk of CHD. 
A total of 260 incidences of CHD were confirmed among men, including 
174 myocardial infarctions (MI). The numbers among women were 66 and 
43, respectively. The multivariate relative risk [95% confidence interval (CI)] 
for current smokers versus never-smokers in men, after adjustment for 
cardiovascular risk factors and several lifestyle factors, was 2.85 (1.98, 4.12) 
for total CHD and 3.64 (2.27, 5.83) for MI. These respective risks in women 
were 3.07 (1.48, 6.40) and 2.90 (1.18, 7.18). Among men, a dose-dependent 
relationship was observed between the number of cigarettes and the risk of 
MI. The population-attributable risk percent (95% CI) of CHD was 46% (34, 55) 
in men and 9% (0, 18) in women. Smoking cessation, however, led to a rapid 
decline in the CHD risk within 2 years (Baba et al., 2006).

Smoking fewer cigarettes/day for a longer duration was more deleterious 
than smoking more cigarettes/day for a shorter duration (P < 0.01). For 50 
pack-years (365,000 cigarettes), estimated RRs of CVD were 2.1 for accrual at 20 
cigarettes/day and 1.6 for accrual at 50 cigarettes/day (Lubin et al., 2016).

3.1.2.1  Women versus men
A systematic review and meta-analysis of prospective cohort studies with data 
for 3 912 809 individuals and 67 075 coronary heart disease events from 86 
prospective trials concluded as follows: In 75 cohorts (2.4 million participants) 
that adjusted for cardiovascular risk factors other than coronary heart disease, 
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the pooled adjusted female-to-male RRR of smoking compared with not 
smoking for coronary heart disease was 1.25 (95% CI 1.12-1.39, p<0.0001). This 
outcome was unchanged after adjustment for potential publication bias, and 
there was no evidence of important between-study heterogeneity (p=0.21). 
The RRR increased by 2% for every additional year of study follow-up (p=0.03). 
In pooled data from 53 studies, there was no evidence of a sex difference in the 
RR between participants who had previously smoked compared with those 
who never had (RRR 0.96, 95% CI 0.86-1.08, p=0.53) (Huxley & Woodward, 2011).

3.1.2.2 Effects of quitting smoking 
In a cohort of 475 734 Korean men aged 30 to 58 years, compared with non-
reducing heavy smokers (>= 20 cigarettes/d), those who quit smoking showed 
significantly lower risks of MI with hazard ratios (95% confidence intervals [CI]) 
of 0.43 (0.34 to 0.53) (Song & Cho, 2008).

3.1.2.3  Suggested RR for smokers compared with non-smokers
Based on the above results from (Tolstrup et al., 2014) and (Song & Cho, 2008), 
the updated risk ratios might be as follows. 

Gender
Age groups

35-40 45-50 50-55 55-60 60-65 >65

men 5.0 4.0 3.0 3.0 2.0 2.0

women 8.5 8.5 6.6 4.8 3.4 3.1

Table 3.3:  Suggested Input Risk Ratios of Developing CHD among Smokers Compared to Never 
      Smokers in Ukraine, by Gender and Age

3.1.3  Mortality
In the Greek cohort study (Notara et al., 2015), which observed 10-year Acute 
Coronary Syndrome (ACS) prognosis among 2172 cardiovascular patients, 
patients with >60 pack-years of smoking had 57.8 % higher ACS mortality and 
24.6 % higher risk for any ACS event. A nested model, adjusted only for age and 
sex, revealed that, for every 30 pack-years of smoking increase, the associated 
ACS risk increased by 13 % (95 % CI 1.03, 1.30, p = 0.001).

Smoking is a strong independent risk factor for cardiovascular events and 
mortality even at older age, advancing cardiovascular mortality by more than 
five years, and demonstrating that smoking cessation in these age groups is 
still beneficial in reducing the excess risk. Random effects meta-analysis of 
the association of smoking status with cardiovascular mortality (based on the 
data of 503 905 participants aged 60 and older, of whom 37 952 died from 
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cardiovascular disease) yielded a summary hazard ratio of 2.07 (95% CI 1.82 to 
2.36) for current smokers and 1.37 (1.25 to 1.49) for former smokers compared 
with never smokers. Corresponding summary estimates for risk advancement 
periods were 5.50 years (4.25 to 6.75) for current smokers and 2.16 years (1.38 
to 2.39) for former smokers. The excess risk in smokers increased with cigarette 
consumption in a dose-response manner and decreased continuously with 
time since smoking cessation in former smokers (Mons et al., 2015).
In Sweden and Estonia, a 13-year follow-up regarding all-cause and 
cardiovascular mortality revealed that smoking and, to a lesser extent, plasma 
levels of interleukin-6 were significant predictors of CVD and non-CVD mortality 
in men, but none of the other conventional risk factors reached statistical 
significance (Jensen-Urstad, Viigimaa, Sammul, Lenhoff, & Johansson, 2014).

In a large prospective cohort of women (Sandhu et al., 2012) without coronary 
heart disease at baseline (among 101 018 women participating in the Nurses’ 
Health Study), a strong dose-response relationship between cigarette smoking 
and SCD risk was observed, and smoking cessation significantly reduced 
and eventually eliminated excess SCD risk. Compared with never smokers, 
current smokers had a 2.44-fold (95% CI, 1.80-3.31) increased risk of SCD after 
controlling for coronary risk factors. In multivariable analyses, the quantity of 
cigarettes smoked daily (P value for trend, <0.0001) and smoking duration (P 
value for trend, <0.0001) were linearly associated with SCD risk among current 
smokers. Small-to-moderate amounts of cigarette consumption (1-14 per 
day) were associated with a significant 1.84-fold (95% CI, 1.16-2.92) increase in 
SCD risk and every 5 years of continued smoking was associated with an 8% 
increase in SCD risk (hazard ratio, 1.08; 95% CI, 1.05-1.12; P<0.0001). The SCD 
risk linearly decreased over time after quitting and was equivalent to that of a 
never-smoker after 20 years of cessation (P value for trend, <0.0001).

3.1.3.1  Effects of quitting smoking
A systematic review was conducted to determine the magnitude of 
risk reduction achieved by smoking cessation in patients with CHD. The 
researchers estimated a 36% reduction in crude relative risk (RR) of mortality 
for patients with CHD who quit, compared with those who continued 
smoking (RR, 0.64; 95% confidence interval [CI], 0.58-0.71) (Critchley & 
Capewell, 2003).
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3.2  COPD

3.2.1  Incidence among the population
Incident cases of COPD in a population-based prospective 9-year study in Sao 
Paulo, Brazil, ranged from 1.4% to 4.0%, depending on the diagnostic criterion 
used (Moreira et al., 2015).

In the Rotterdam Study (Terzikhan et al., 2016), the overall IR was higher in 
men (13.3/1000 PY, 95 % CI 12.4–14.3) than in women (6.1/1000 PY, 95 % CI 
5.6–6.6); age-specific IR ranged between 8.7 and 17.6/1000 PY in males and 
3.0–7.9/1000 PY in females. The incidence of COPD increased from the age of 
45 in both sexes to the age of 80 in men and 75 in women (Figure 3.3). 
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Figure 3.3: Age-Specific Incidence of COPD by Sex and Age, Drawn from 
      (Terzikhan et al., 2016)

Although some studies report either relative risks of COPD among people in 
older age groups or mention that incidence increases after age 45 (Terzikhan 
et al., 2016), this does not mean that COPD is only occurring among people 
over 45. A systematic review on global burden of COPD (Halbert et al., 2006) 
reports pooled COPD prevalence at the level of 3.1% (1.8–5.0) among people 
younger than 40. Additionally, the WHO global report on mortality attributable 
to tobacco (World Health Organization, 2012) reports tobacco-related 
mortality starting from 30 years of age and estimates that 39% of COPD deaths 
among people aged 30-44 are attributable to tobacco.

The only study which reported the incidence of COPD by age and sex was 
conducted in Japan (Kojima et al., 2007). Its findings were used to estimate 
incidence by age groups in Ukraine. 
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Age 
(years)

Males Females

n
Number of 

incidence cases 
for COPD

Incidence rate (per 
100 person-years)

n
Number of 

incidence cases 
for COPD

Incidence rate (per 
100 person-years)

Total 11,160 387 0.81 5,946 79 0.31

25-29 94 2 0.62 36 0 0.00

30-34 625 7 0.31 181 1 0.16

35-39 1,609 24 0.35 712 4 0.13

40-44 1,973 45 0.47 1,161 10 0.18

45-49 2,153 65 0.61 1,279 12 0.19

50-54 1,879 90 1.05 1,157 21 0.42

55-59 1,729 74 1.25 1,002 12 0.35

60-64 745 39 1.67 264 9 1.02

65-69 252 24 2.75 109 7 1.69

70-74 101 17 4.95 45 3 2.05

Table 3.4:  Extract on the Incidence of COPD by Age and Sex in Japan (Kojima et al., 2007)

Another study conducted in Japan (Fukuchi et al., 2004) reported the 
prevalence of COPD among adults: 10.9% altogether, 16.4% among men and 
5.0% among women. 

These data on incidence and prevalence were considered in order to obtain 
extrapolated estimates for Ukraine. However, the only disease occurrence 
indicator available for Ukraine is the prevalence of COPD from the WHO 
Euro Health for all database, which reports a level of 3.7-3.9% in 2005-2015. 
However, studies aimed at COPD measurement conducted, for instance, in 
Norway (Johannessen, Omenaas, Bakke, & Gulsvik, 2005) found that about half 
of COPD cases remain undiagnosed. Another study (Nielsen, 2009) projected 
COPD prevalence to be 15-25% of the adult population. Yet the prevalence of 
COPD in Norway reported in HFADB is 0.2%.

Additionally, there is a recognized discrepancy in COPD prevalence across 
different countries and various studies. This is believed to be determined 
by the methods and definitions used to measure disease (Halbert, Isonaka, 
George, & Iqbal, 2003). Prevalence in most countries where proper measures 
were conducted was found to be between 4% and 10%.
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Thus, there are no serious grounds to expect that the incidence of COPD in 
Ukraine should be lower than in Japan. Data on COPD incidence from the 
Japan study (Kojima et al., 2007) are suggested for use.

Age groups

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74

Men 0.62 0.31 0.35 0.47 0.61 1.05 1.25 1.67 2.75 4.95

Women 0.00 0.16 0.13 0.18 0.19 0.42 0.35 1.02 1.69 2.05

Table 3.4:  Suggested Incidence Rates for COPD 

3.2.2  Risk of COPD in smokers
The incidence rate (IR) (Terzikhan et al., 2016) was higher in current and former 
smokers than in never smokers (19.7/1000 PY, 95 % CI 18.1–21.4 in current 
smokers, 8.3/1000 PY, 95 % CI 7.6–9.1 in former smokers and 4.1/1000 PY, 95 % 
CI 3.6–4.7, in never smokers). The IR of COPD in smoking men was 15.0/1000 
PY (95 % CI 13.9–16.2), compared to 8.6/1000 PY (95 % CI 7.8–9.5) in smoking 
women. The age-specific IR of COPD in ever smokers ranged between 7.3 and 
15.3/1000 PY. The IR was 6.0/1000 PY (95 % CI 4.6–7.8) in never-smoking men 
and 3.7/1,000 PY (95 % CI 3.1–4.3) in never-smoking women. The age-specific 
incidence of COPD in never smokers increased by age, but to a lesser extent 
than the incidence of COPD in ever smokers (Figure 3. 5). 
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Figure 3.5: Age-Specific Incidence of COPD by Smoking Status, Extracted 
       from (Terzikhan et al., 2016)
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The abovementioned study from Norway found that adjusted odds ratios (OR) 
for current smokers and ex-smokers were 9.6 (95% CI 3.6-25.2) and 5.0 (95% CI 
1.8-13.8), compared to never smokers (Johannessen et al., 2005).

The comparisons of risks from these two studies were extracted for the model.

Age groups

35-40 45-50 50-55 55-60 60-65 65-69 70-74 75+

Smokers 9.6 8.4 6.6 5.0 4.6 4.5 4.9 5.0

Ex smokers 5.0 4.7 4.2 3.8 4.0 4.5 4.8 5.0

Table 3.5:  Suggested Estimates for COPD RR in Smokers and Former Smokers, 
                     Compared with Never Smokers

The suggested RRs are equal for men and women. With regard to various 
tobacco-related diseases, some researchers have reported that the risk of 
contracting these diseases is greater in women than in men, while others found 
that the risk is identical. In Danish cohorts (Prescott, Bjerg, Andersen, Lange, & 
Vestbo, 1997), it was seen that risk associated with pack-years was higher in 
females than in males. As women smokers in Ukraine on average smoke fewer 
cigarettes, equal RRs for men and women can be considered grounded.

3.3  Hypertension 

3.3.1.1  Effects of smoking 
While some authors find an association between tobacco smoking and high 
blood pressure (Tesfaye, Byass, & Wall, 2009; Tesfaye, Byass, Wall, Berhane, 
& Bonita, 2008), it is necessary to distinguish between short-term, acute 
hypertensive effects and the long-term risk of developing chronic hypertension.

Cigarette smoking acutely exerts a hypertensive effect, mainly through the 
stimulation of the sympathetic nervous system. As regards the impact of 
chronic smoking on blood pressure, available data do not provide evidence of a 
direct causal relationship between these two cardiovascular risk factors (Poulter, 
2002), a concept supported by the evidence that lower blood pressure values 
have not been observed after chronic smoking cessation (Virdis, Giannarelli, 
Neves, Taddei, & Ghiadoni, 2010). Though the prevalence of hypertension was 
higher in former smokers than in never smokers (13.5 versus 8.8%, P < 0.001) 
and the risk of hypertension was higher [odds ratio (OR) 1.31 (1.13-1.52), P< 
0.001] in former smokers than in never smokers (Halimi et al., 2002), these 
findings were from a cross-sectional study, and no grounds for cause-and-effect 
association are found in this regard (Poulter, 2002).
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3.3.1.1  Effects of quitting smoking
The effect of smoking cessation on the risk of developing hypertension 
(HPT) and on BP values was studied in a longitudinal study, with a follow-up 
period of 8 years, which included the participants of the Olivetti Heart Study. 
These were 430 untreated normotensive non-diabetic men with normal renal 
function (D’Elia et al., 2014). After 8 years of follow-up, BP changes (delta) were 
significantly lower in ex-smokers than in smokers (delta SBP/DBP: 12.6 +/- 
13.4/7.9 +/- 8.1 vs. 16.0 +/- 14.9/10.3 +/- 10.1 mm Hg; P < 0.05; M +/- SD), also 
after adjustment for potential confounders. Moreover, at the last examination, 
the overall HPT prevalence was 33%, with lower values in ex-smokers than in 
smokers (25 vs. 38%, P = 0.01). After accounting for age, BP and BMI at baseline, 
and changes in smoking habits over the 8-year period, ex-smokers still had 
significantly lower risk of HPT than smokers (odds ratio 0.30, 95% confidence 
interval 0.15-0.58; P < 0.01).

Taking into account contradictory data on the impact of tobacco smoking on 
developing hypertension, we decided to exclude hypertension from the list of 
diseases modeled in the microsimulation of tobacco-related health impacts.

3.4  Lung Cancer

3.4.1  Relative risk
3.4.1.1  Effects of smoking
In the Seoul Male Cancer Cohort Study (SMCC), which included 14 272 men, 
cigarette smoking was associated with 4.18-fold risk of lung cancer in Korean 
men (Bae et al., 2007).

3.4.1.1  Women versus men
Analysis was conducted on the data of 279 214 men and 184 623 women 
from eight states in the USA, aged 50-71 years at study baseline, participating 
in the NIH-AARP Diet and Health study. Findings revealed that incidence rates 
were 20.3 (95% Cl 16.3-24.3) per 100 000 person-years in men who had never 
smoked (99 cancers) and 25.3 (21.3-29.3) in women who had never smoked 
(152 cancers); for this group, the adjusted hazard ratio for lung cancer was 1.3 
(1.0-1.8) for women compared with men. 

Smoking was associated with increased risk of lung cancer in men and 
women. The incidence rate of current smokers who smoked more than two 
packs per day was 1259.2 (1035.0-1483.3) in men and 1308.9 (924.2-1693.6) in 
women. In current smokers, in a model adjusted for typical smoking dose, the 
HR was 0.9 (0.8-0.9) for women compared with men. 

For former smokers, in a model adjusted for years of cessation and typical 
smoking dose, the HR was 0.9 (0.9-1.0) for women compared with men. 
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Incidence rates of adenocarcinoma, small-cell carcinoma, and undifferentiated 
tumors were similar in men and women; incidence rates of squamous tumors 
in men were about twice those in women. These findings suggest that 
women are not more susceptible than men to the carcinogenic effects of 
cigarette smoking in the lung. In smokers, incidence rates tended to be higher 
in men than women with comparable smoking histories, but differences were 
modest; smoking was strongly associated with lung cancer risk in both men 
and women (Freedman, Leitzmann, Hollenbeck, Schatzkin & Abnet, 2008).

3.4.2  Mortality

3.4.2.1  Effects of smoking
In the Japan Collaborative Cohort (JACC) Study, with 45 010 males and 
55 724 females aged 40-79 years, 52.2% and 14.8% of lung cancer deaths 
were attributable to current and former cigarette smoking, respectively. In 
females, the corresponding figures were 11.8% and 2.8%. Among current 
male smokers, the relative risk was strongly correlated with the intensity and 
duration of cigarette smoking. In contrast, the PAR was associated with an 
intermediate level of smoking except for the years of smoking: the largest 
PARs were observed in those with 20-29 cigarettes per day, 40-59 pack-years 
and 20-22 years old at smoking inception. Absolute risks were estimated to 
increase with age and duration of smoking and not to decrease even after 
cessation (Ando et al., 2003).

3.4.1.1  Effects of quitting smoking
Pooled data from three large-scale cohort studies in Japan were used to 
evaluate the impact of smoking cessation on the decrease in risk of lung cancer 
death in male ex-smokers by age at quitting. For simplicity, subjects were limited 
to male never smokers and former or current smokers who started smoking 
at ages 18-22 years. 110 002 men aged 40-79 years at baseline were included. 
During the mean follow-up of 8.5 years, 968 men died from lung cancer. The 
mortality rate ratio compared to current smokers decreased with increasing 
attained age in men who stopped smoking before age 70 years. Among 
men who quit in their fifties, the cohort-adjusted mortality rate ratios (95% 
confidence interval) were 0.57 (0.40-0.82), 0.44 (0.29-0.66) and 0.36 (0.13-1.00) 
at attained ages 60-69, 70-79 and 80-89 years, respectively. The corresponding 
figures for those who quit in their sixties were 0.81 (0.44-1.48), 0.60 (0.43-0.82) 
and 0.43 (0.21-0.86). Overall, the mortality rate ratio for current smokers, relative 
to nonsmokers, was 4.71 (95% confidence interval 3.76-5.89) and those for 
ex-smokers who had quit smoking 0-4, 5-9, 10-14, 15-19, 20-24 and >= 25 years 
before were 3.99 (2.97-5.35), 2.55 (1.80-3.62), 1.87 (1.23-2.85), 1.21 (0.66-2.22), 
0.76 (0.33-1.75) and 0.67 (0.34-1.32), respectively. Although earlier cessation 
of smoking generally resulted in a lower rate of lung cancer mortality in each 
group of attained age, the absolute mortality rate decreased appreciably after 
stopping smoking even in men who quit at ages 60-69 years (Wakai et al., 2007).
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3.5  Peripheral arterial disease (PAD)
In a meta-analysis of the association between cigarette smoking and PAD, 
the pooled OR for current smokers was 2.71 (95% CI 2.28 to 3.21); for ex-
smokers, the pooled OR was 1.67 (95% CI 1.54 to 1.81). The magnitude of the 
association is greater than that reported for coronary heart disease. The risk is 
lower among ex-smokers but, nonetheless, significantly increased compared 
with never smokers (Lu, Mackay, & Pell, 2014).

3.5.1  Any stroke

3.5.1.1  Effects of smoking 
In a meta-analysis on the possible risks of stroke from cigarette smoking 
(Shinton & Beevers, 1989), the overall relative risk of stroke associated with 
cigarette smoking was 1.5 (95% confidence interval 1.4 to 1.6). Considerable 
differences were seen in relative risks among the subtypes: Cerebral infarction 
1.9, cerebral hemorrhage 0.7, and subarachnoid hemorrhage 2.9. An effect 
of age on the relative risk was also noted; less than 55 years 2.9, 55-74 years 
1.8, and greater than or equal to 75 years 1.1. A dose response between the 
number of cigarettes smoked and relative risk was noted, and there was a small 
increased risk in women compared with men. Ex-smokers under the age of 75 
seemed to retain an appreciably increased risk of stroke (1.5); for all ages, the 
relative risk in ex-smokers was 1.2.

In a prospective study (Wannamethee, Shaper, Whincup, & Walker, 1995) of 
cardiovascular disease and its risk factors, 7735 men aged 40 through 59 years 
were drawn at random from the age-sex registers of one general practice in 
each of 24 British towns from 1978 through 1980 (the British Regional Heart 
Study). During the 12.75 years of follow-up, there were 167 major stroke events 
(43 fatal and 124 non-fatal) in the 7264 men with no recall of previous ischemic 
heart disease or stroke. After full adjustment for other risk factors, current 
smokers had a nearly fourfold relative risk (RR) of stroke compared with never 
smokers (RR, 3.7; 95% confidence interval [CI], 2.0 to 6.9). 

Ex-smokers showed lower risk than current smokers, but showed excess risk 
compared with never smokers (RR, 1.7; 95% CI, 0.9 to 3.3; P = .11); those who 
switched to pipe or cigar smoking showed a significantly increased risk (RR, 3.3; 
95% CI, 1.6 to 7.1), similar to that of current light smokers. Primary pipe or cigar 
smokers also showed increased risk (RR, 2.2; 95% CI, 0.6 to 8.0), but the number 
of subjects involved was small. The benefit of giving up smoking completely 
was seen within five years of quitting, with no further consistent decline in 
risk thereafter, but this was dependent on the amount of tobacco smoked. 
Light smokers (< 20 cigarettes/d) reverted to the risk level of those who had 
never smoked. Heavy smokers retained a more than twofold risk compared 
with never smokers (RR, 2.2; 95% CI, 1.1 to 4.3). The age-adjusted RR of stroke in 
those who quit smoking during the first five years of follow-up (recent quitters) 
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was reduced compared with continuing smokers (RR, 1.8; 95% CI, 0.7 to 4.6 
vs. RR, 4.3; 95% CI, 2.1 to 8.8). The benefit of quitting smoking was observed 
in both normotensive and hypertensive men, but the absolute benefit was 
greater in hypertensive subjects. Thus, smoking cessation is associated with a 
considerable and rapid benefit in decreasing the risk of stroke, particularly in 
light smokers (< 20 cigarettes/d); a complete loss of risk is not seen in heavy 
smokers. Switching to pipe or cigar smoking confers little benefit, emphasizing 
the need for complete cessation of smoking. The absolute benefit of quitting 
smoking on risk of stroke is most marked in hypertensive subjects.

In the Japan Public Health Center-based Prospective Study on Cancer and 
Cardiovascular Disease (JPHC Study), relative risks (95% CIs) for current smokers 
compared with never-smokers, after adjustment for cardiovascular risk factors 
and public health center, were 1.27 (1.05 to 1.54) for total stroke, 0.72 (0.49 to 
1.07) for intraparenchymal hemorrhage, 3.60 (1.62 to 8.01) for subarachnoid 
hemorrhage, and 1.66 (1.25 to 2.20) for ischemic stroke. The respective 
multivariate relative risks among women were 1.98 (1.42 to 2.77), 1.53 (0.86 
to 4.25), 2.70 (1.45 to 5.02), and 1.57 (0.86 to 2.87). There was a dose-response 
relation between the number of cigarettes smoked and risks of ischemic stroke 
for men. A similar positive association was observed between smoking and 
risks of lacunar infarction and large-artery occlusive infarction, but not embolic 
infarction (Mannami et al., 2004).

3.5.1.1  Women versus men
In a systematic review and meta-analysis which aimed to estimate the effect of 
smoking on stroke in women compared with men (Peters, Huxley, & Woodward, 
2013), with data from 81 prospective cohort studies that included 3 980 359 
individuals and 42 401 strokes, the pooled multiple-adjusted RRR indicated a 
similar risk of stroke associated with smoking in women compared with men 
(RRR, 1.06 [95% confidence interval, 0.99-1.13]). In a regional analysis, there 
was evidence of a more harmful effect of smoking in women than in men 
in Western populations (RRR, 1.10 [1.02-1.18]), but not in Asian populations 
(RRR, 0.97 [0.87-1.09]). Compared with never-smokers, the beneficial effects of 
quitting smoking on stroke risk among former smokers were similar between 
the sexes (RRR, 1.10 [0.99-1.22]).

3.5.2  Ischemic stroke
Smoking is associated with an increased risk of ischemic stroke or CV death in 
the Atherosclerosis Risk in Communities (ARIC) Study, which comprised mostly 
middle-aged to young-old subjects (65-74 years), but not in the Cardiovascular 
Health Study (CHS), which comprised mostly middle-old or oldest-old (>= 75 
years) adults with atrial fibrillation. Compared with never smokers, current smokers 
had a higher incidence of the composite endpoint in ARIC [HR: 1.65 (1.21-2.26)], 
but not in CHS [HR: 1.05 (0.69-1.61)] (Kwon et al., 2016).
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3.5.2.1  Effects of quitting or reducing smoking 
In a cohort of 475 734 Korean men aged 30 to 58 years, compared with 
non-reducing heavy smokers (>= 20 cigarettes/d), those who quit smoking 
showed significantly lower risks of ischemic stroke with hazard ratios (95% 
confidence intervals [CI]) of 0.66 (0.55 to 0.79). Compared with non-reducing 
heavy smokers, the risks of all strokes combined and MI among reducers 
tended to decrease, although the decrements were not statistically significant 
(Song & Cho, 2008).

3.5.3  Hemorrhagic stroke

3.5.3.1  Relative risk

3.5.3.1.1  Effects of smoking 
In a study of incident cerebral microbleeds (CMBs), which are asymptomatic 
precursors of intracerebral hemorrhage, conducted among 2635 individuals 
aged 66 to 93 years from the population-based Age, Gene/Environment 
Susceptibility (AGES)-Reykjavik Study, relative risk for current smoking was 1.47 
[95% CI, 1.11-1.94] (Ding et al., 2015).

3.5.1.1.1  Effects of quitting or reducing smoking 
In a cohort of 475 734 Korean men aged 30 to 58 years, compared with 
non-reducing heavy smokers (>= 20 cigarettes/d), those who quit smoking 
showed significantly lower risks of subarachnoid hemorrhage with hazard 
ratios (95% confidence intervals [CI]) of 0.58 (0.38 to 0.90). For hemorrhagic 
stroke, quitters showed lower risk compared with heavy smokers, but the 
difference was not statistically significant (hazard ratio 0.82, 95% CI: 0.64 
to 1.06). The risks of subarachnoid hemorrhage in those who reduced 
from moderate to light smoking tended to be lower than in non-reducing 
moderate (10 to 19 cigarettes/d) smokers (Song & Cho, 2008).

3.5.1.2  Suggested relative risks
Based on the above literature on cumulative risk of all strokes, the below RRs 
are suggested for the model.

Age groups

35-40 40-50 50-55 55-60 60-65 >65

Smokers 1.7 1.7 1.5 1.5 1.2 1.2

Ex smokers 4.3 3.7 2.9 1.8 1.8 1.2

Table 3.6:  Estimates of All Strokes Relative Risk for Smokers and Ex-Smokers Compared to Never 
                     Smokers for the Microsimulation Model by Age Group, Both Genders
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3.6  All-Cause Mortality

3.6.1.1  Effects of smoking 
In a large community-based prospective cohort study comprising 6209 Beijing 
adults (aged >= 40 years) studied for approximately eight years (1991-1999), 
the multivariable-adjusted HRs for all-cause mortality were 2.7 (95% confidence 
interval (CI):1.56-4.69) in young adult smokers (40-50 years) and 1.31 (95% 
CI: 1.13-1.52) in old smokers (>50 years) (Li et al., 2016). Mortality differences 
(/10,000 person-years) were 15.99 (95% CI: 15.34-16.64) in the young and 
74.61(68.57-80.65) in the old. Compared with current smokers, the HRs of all-
cause deaths for former smokers in younger and older adults were 0.57 (95% CI: 
0.23-1.42) and 0.96 (95% CI: 0.73-1.26), respectively.

Among 20 033 individuals participating in the Health Effects of Arsenic 
Longitudinal Study (HEALS) in Bangladesh, cigarette/bidi smoking was positively 
associated with all-cause (HR 1.40, 95% CI 1.06 1.86) and cancer mortality (HR 
2.91, 1.24 6.80), and there was a dose-response relationship between increasing 
intensity of cigarette/bidi consumption and increasing mortality. An elevated 
risk of death from ischemic heart disease (HR 1.87, 1.08 3.24) was associated 
with current cigarette/bidi smoking. Among women, the corresponding HRs 
were 1.65 (95% CI 1.16 2.36) for all-cause mortality and 2.69 (95% CI 1.20 6.01) for 
ischemic heart disease mortality. Cigarette/bidi smoking accounted for about 
25.0% of deaths in men and 7.6% in women (Wu et al., 2013).

3.6.1.1  Effects of quitting smoking
Effects of quitting smoking on all-cause mortality were measured in a cohort of 
1 494 Chinese people (961 men, 533 women) followed for 18 years (1976-1994) 
to assess changes in smoking behavior and then for an additional 17 years 
(1994-2011) to examine the relationships of continuing to smoke and new 
quitting with mortality risk. Ever smokers had increased risks of lung cancer, 
coronary heart disease, thrombotic stroke, and COPD, with dose-response 
relationships. For all tobacco-related mortality, the relative risk for new quitters 
compared with continuing smokers was 0.68 (95% confidence interval: 0.46, 
0.99) for those who had quit two to seven years previously and 0.56 (95% 
confidence interval: 0.37, 0.85) for those who had quit eight years or more 
previously. The corresponding relative risks were 0.69 and 0.45 for lung cancer, 
0.78 and 0.51 for coronary heart disease, 0.76 and 0.84 for thrombotic stroke, 
and 0.89 and 0.61 for COPD, respectively (He et al., 2014).
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In the Singapore Chinese Health Study, a cohort study of middle-aged and 
elderly Chinese in Singapore (n=48 251), compared with current smokers, the 
adjusted HR (95% CI) for total mortality was 0.84 (0.76 to 0.94) for new quitters, 
0.61 (0.56 to 0.67) for long-term quitters and 0.49 (0.46 to 0.53) for never-
smokers. New quitters had a 24% reduction in lung cancer mortality (HR: 0.76, 
95% CI 0.57 to 1.00), and long-term quitters had a 56% reduction (HR: 0.44, 
95% CI 0.35 to 0.57). The risk for coronary heart disease mortality was reduced 
in new quitters (HR: 0.84, 95% CI 0.66 to 1.08) and long-term quitters (HR: 0.63, 
95% CI 0.52 to 0.77), although the result for new quitters was of borderline 
significance due to the relatively small number of cardiovascular deaths. The 
risk for chronic pulmonary disease mortality was reduced in long-term quitters 
but increased in new quitters. The authors concluded that significant reduction 
in the risk of total mortality, specifically for lung cancer mortality, can be 
achieved within five years of smoking cessation (Lim, Tai, Yuan, Yu, & Koh, 2013).
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